高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可处理多普勒量测的最佳线性无偏估计算法

王炜 李丹 姜礼平 金裕红

王炜, 李丹, 姜礼平, 金裕红. 可处理多普勒量测的最佳线性无偏估计算法[J]. 电子与信息学报, 2015, 37(6): 1336-1342. doi: 10.11999/JEIT141113
引用本文: 王炜, 李丹, 姜礼平, 金裕红. 可处理多普勒量测的最佳线性无偏估计算法[J]. 电子与信息学报, 2015, 37(6): 1336-1342. doi: 10.11999/JEIT141113
Wang Wei, Li Dan, Jiang Li-ping, Jin Yu-hong. The Best Linear Unbiased Estimation Algorithm with Doppler Measurements[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1336-1342. doi: 10.11999/JEIT141113
Citation: Wang Wei, Li Dan, Jiang Li-ping, Jin Yu-hong. The Best Linear Unbiased Estimation Algorithm with Doppler Measurements[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1336-1342. doi: 10.11999/JEIT141113

可处理多普勒量测的最佳线性无偏估计算法

doi: 10.11999/JEIT141113
基金项目: 

国家自然科学基金(51307128, 60873032),中央高校基本科研业务费专项资金(2012-Ia-045),湖北省自然科学基金(2013CFB437)和海工大基金(HJGSK2014G121)资助课题

The Best Linear Unbiased Estimation Algorithm with Doppler Measurements

  • 摘要: 基于目标位置量测的一些量测转换方法已被广泛使用在目标跟踪应用中,使得卡尔曼滤波器得以在直角坐标系中应用。但是,这些量测转换方法有一些会导致估计性能恶化的根本缺陷。事实上,除了位置量测外,理论计算和实践已经证明,包含目标速度信息的多普勒量测具有有效提高目标状态估计精度的潜力。该文在直角坐标系下提出一种可使用转换多普勒量测(即距离量测与多普勒量测的乘积)的滤波器。从理论上讲,它是在最佳线性无偏估计准则下的最优线性无偏滤波器,并且避免了量测转换方法的根本缺陷。通过将近似处理后的新型最优线性滤波器与目前4种流行的方法进行仿真比较,验证了所提出的滤波器的优越性。
  • Bordonaro S V, Willett P, and Bar-Shalom Y. Performance analysis of the converted range rate and position linear Kalman filter[C]. 2013 Asilomar Conference on Systems and Computers, Signals, California, USA, 2013, 1751-1755.
    Bordonaro S V, Willett P, and Bar-Shalom Y. Decorrelated, unbiased converted measurement kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1431-1442.
    Lerro D and Bar-Shalom Y. Tracking with debiased consistent converted measurements vs. EKF[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3): 1015-1022.
    Mo Long-bin, Song Xiao-quan, and Bar-Shalom Y. Unbiased converted measurements for tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 1023-1027.
    Duan Zhan-sheng, Han Chong-zhao, and Li Xiao-rong. Comments on unbiased converted measurements for tracking [J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1374-1377.
    Zhao Zhan-lue, Li Xiao-rong, and Jilkov V P. Best linear unbiased filtering with nonlinear measurements for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1324-1336.
    Bar-Shalom Y. Negative correlation and optimal tracking with Doppler measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 1117-1120.
    Smith M A. On Doppler measurements for tracking[C]. 2008 International Conference on Radar, Australia, 2008: 513-518.
    Bar-Shalom Y, Willett P, and Tian X. Tracking and Data Fusion: a Handbook of Algorithms[M]. Storrs, CT: YBS Publishing, 2011: 211-286.
    Musicki D, Song T L, and Lee H H. Correlated Doppler- assisted target tracking in clutter[J]. IET Radar, Sonar Navigation, 2013, 7(1): 94-100.
    Duan Zhan-sheng, Li Xiao-rong, and Han Chong-zhao. Sequential nonlinear tracking filter with range-rate measurements in spherical coordinates[C]. 7th International Conference on Information Fusion, Stockholm, Sweden, 2004: 131-138.
    Jiao Lian-meng, Pan Quan, and Feng Xiao-xue. A nonlinear tracking algorithm with range-rate measurements based on unbiased measurement conversion[C]. 15th International Conference on Information Fusion, Singapore, 2012: 1400-1405.
    Lei Ming and Han Chong-zhao. Sequential nonlinear tracking using UKF and raw range-rate measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 239-250.
    Zhou Gong-jian, Michel P, and Thiagalingan K. Statically fused converted position and Doppler measurement Kalman filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 300-316.
    Duan Zhan-sheng, Li Xiao-rong, and Han Chong-zhao. Sequential unscented Kalman filter for radar target tracking with range rate measurements[C]. 8th International Conference on Information Fusion, Philadelphia, PA, USA, 2005, 1: 130-137.
  • 加载中
计量
  • 文章访问数:  1414
  • HTML全文浏览量:  117
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-21
  • 修回日期:  2014-12-22
  • 刊出日期:  2015-06-19

目录

    /

    返回文章
    返回