A Novel Approach for Detecting and Tracking Weak Targets in High-PRF Radar
-
摘要: 针对高脉冲重复频率(PRF)雷达对微弱目标的检测跟踪问题,该文提出一种雷达测距模糊条件下基于检测前跟踪(TBD)的微弱目标跟踪方法。该算法借用TBD的思想精髓,对于每一时刻的量测,既不进行目标有无的检测也不解距离模糊,而是将目标检测和解距离模糊统一在目标真实航迹的获取中。首先通过批处理把目标的模糊量测在所有模糊区间进行多假设扩展,从而提取量测的时空相关信息;然后基于目标真实航迹在时空上的连续性和不同PRF量测之间的相关性,通过TBD方法得到目标航迹,同时实现解距离模糊。与同类研究相比, 该方法将微弱目标解距离模糊问题统一到目标航迹的检测确认过程中,避免了低信噪比(SNR)造成的航迹漏检,为实现高脉冲重复频率雷达微弱目标的检测跟踪提供了一种新的思路。最后,通过仿真验证了该算法的有效性。Abstract: On the condition of a high Pulse Repetition Frequency (PRF) mode, radars may suffer from range ambiguity, which poses a significant challenge to detecting and tracking weak targets. To address this problem, a novel approach, which can handle ambiguous data of weak targets, is proposed within the Track Before Detect (TBD) framework. The main idea is that, without the pre-detection and ambiguity resolution step at each time step, the problem of range ambiguity resolution and target detection are transformed into the decision of the target true track. At first, the space-time relative information can be achieved by a multiple hypothesis ranging procedure, in which all the ambiguous measurements are handled via a batch procedure. Next, based on the relativity in time and PRF domains, the track is detected with a TBD method while the ambiguous data is unfolded. Different to classic methods, the new approach transforms the problem of range ambiguity resolution into the decision of the real track for targets, which provides a new way to such problem, avoiding the loss tracking of the weak target with lower Signal Noise Ratio (SNR). An application example is given to analyze and compare the performance between the proposed approach and the existing approach. The simulation results illustrate the effectiveness of this approach.
期刊类型引用(9)
1. 李渝,张升,马纯志,闫海艳,李财品,段崇棣. 基于滑窗对比度的多源融合目标恒虚警检测方法. 现代雷达. 2023(04): 25-30 . 百度学术
2. 高飞,贺亚鹏,张豫,党红杏,谭小敏. 大气阻力下高速子弹目标雷达检测与跟踪. 现代雷达. 2020(05): 63-69+75 . 百度学术
3. BAO Zhichao,JIANG Qiuxi,LIU Fangzheng. Multiple model efficient particle filter based track-before-detect for maneuvering weak targets. Journal of Systems Engineering and Electronics. 2020(04): 647-656 . 必应学术
4. 刘贵如,王陆林,邹姗. 基于双剔除门限的Switching-CFAR目标检测算法. 重庆邮电大学学报(自然科学版). 2018(02): 222-229 . 百度学术
5. 王刚,董晓龙. 基于混叠脉冲压缩处理的脉冲簇设计. 电子设计工程. 2018(02): 94-97 . 百度学术
6. 刘贵如,王陆林,邹姗. 非均匀噪声下基于双剔除门限的恒虚警目标检测算法. 华东师范大学学报(自然科学版). 2018(01): 135-145 . 百度学术
7. 刘贵如,王陆林,邹姗. 基于排序的自动剔除Switching-CFAR检测器. 华东师范大学学报(自然科学版). 2017(03): 120-132 . 百度学术
8. 郅季炘. 基于改进高斯混合模型的运动目标检测与跟踪. 现代电子技术. 2017(21): 69-72 . 百度学术
9. 刘红亮,周生华,刘宏伟,严俊坤. 一种航迹恒虚警的目标检测跟踪一体化算法. 电子与信息学报. 2016(05): 1072-1078 . 本站查看
其他类型引用(7)
-
计量
- 文章访问数: 1633
- HTML全文浏览量: 171
- PDF下载量: 605
- 被引次数: 16