高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分块的有序范德蒙矩阵作为压缩感知测量矩阵的研究

赵瑞珍 王若乾 张凤珍 岑翼刚 胡绍海

郭文卓, 张曙. 多用户下行链路最小拥塞预编码算法及其性能分析[J]. 电子与信息学报, 2010, 32(5): 1168-1172. doi: 10.3724/SP.J.1146.2009.00623
引用本文: 赵瑞珍, 王若乾, 张凤珍, 岑翼刚, 胡绍海. 分块的有序范德蒙矩阵作为压缩感知测量矩阵的研究[J]. 电子与信息学报, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860
Guo Wen-zhuo, Zhang Shu. A Minimum Jamming Precoding Algorithm and Its Performance Analysis for the Downlink Multiuser System[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1168-1172. doi: 10.3724/SP.J.1146.2009.00623
Citation: Zhao Rui-zhen, Wang Ruo-qian, Zhang Feng-zhen, Cen Yi-gang, Hu Shao-hai. Research on the Blocked Ordered Vandermonde Matrix Used as Measurement Matrix for Compressed Sensing[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860

分块的有序范德蒙矩阵作为压缩感知测量矩阵的研究

doi: 10.11999/JEIT140860
基金项目: 

国家自然科学基金(61073079),中央高校基本科研业务费专项基金(2013JBZ003),高等学校博士点基金(20120009110008)和教育部新世纪优秀人才支持计划(NCET-12-0768)资助课题

Research on the Blocked Ordered Vandermonde Matrix Used as Measurement Matrix for Compressed Sensing

  • 摘要: 测量矩阵是压缩感知(Compressed Sensing, CS)的重要组成部分,确定性的测量矩阵易于硬件实现,但是重构信号的精度一般不如随机矩阵。针对这一缺点,该文提出并构造了一种新的确定性测量矩阵,称作分块的有序范德蒙矩阵。范德蒙矩阵具有线性不相关的性质,在此基础上加上分块操作和对元素进行有序排列得到的分块的有序范德蒙矩阵,实现了时域中的非均匀采样,特别适合于维数较大的自然图像信号。仿真实验表明,对于图像信号该矩阵具有远高于高斯矩阵的重构精度,可以作为实际中的测量矩阵使用。
  • Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    Donoho D L and Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
    Duarte M F, Davenport M A, Takhar D, et al.. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
    DeVore R. Deterministic constructions of compressed sensing matrices[J]. Journal of Complexity, 2007, 23(46): 918-925.
    林斌, 彭玉楼. 基于混沌序列的压缩感知测量矩阵构造算法[J]. 计算机工程与应用, 2013, 49(23): 199-202.
    Lin Bin and Peng Yu-lou. Measurement matrix construction algorithm for compressed sensing based on chaos sequence[J]. Computer Engineering and Applications, 2013, 49(23): 199-202.
    Mohades M M, Mohades A, and Tadaion A. A reed-solomon code based measurement matrix with small coherence[J]. IEEE Signal Processing Letters, 2014, 21(7): 839-843.
    Liu Xin-ji and Xia Shu-tao. Constructions of quasi-cyclic measurement matrices based on array codes[C]. Proceedings of the IEEE International Symposium on Information Theory,
    Istanbul, Turkey, 2013: 479-483.
    Gan L. Block compressed sensing of natural images[C]. 15th IEEE International Conference on Digital Signal Processing, Cardiff, Wales, 2007: 403-406.
    张波, 刘郁林, 王开. 稀疏随机矩阵有限等距性质分析[J]. 电子与信息学报, 2014, 36(1): 169-174.
    Zhang Bo, Liu Yu-lin, and Wang Kai. Restricted isometry property analysis for sparse random matrices[J]. Journal of Electronics Information Technology, 2014, 36(1): 169-174.
    Bajwa W U, Haupt J, Raz G, et al.. Toeplitz-structured compressed sensing matrices[C]. Proceedings of the IEEE Workshop on Statistical Signal Processing (SSP), Madison, USA, 2007: 294-298.
    Zhao Rui-zhen, Li Hao, Qin Zhou, et al.. A new construction method for generalized Hadamard matrix in compressive sensing[C]. Proceedings of the 2011 Cross-Strait Conference on Information Science and Technology, Danshui, China, 2011: 309-313.
    居余马. 线性代数[M]. 第2版, 北京: 清华大学出版社, 2002: 17-18.
    Ju Yu-ma. Linear Algebra[M]. 2nd Edition, Beijing: Tsinghua University Press, 2002: 17-18.
    Jalbin J, Hemalatha R, and Radha S. Two measurement matrix based nonuniform sampling for wireless sensor networks[C]. Proceedings of the 3rd International Conference on Computing Communication Networking Technologies (ICCCNT'2012), Coimbatore, India, 2012: 1-4.
    李珅, 马彩文, 李艳, 等. 压缩感知重构算法综述[J]. 红外与激光工程, 2013, 42(S1): 225-232.
    Li Kun, Ma Cai-wen, Li Yan, et al.. Survey on reconstruction algorithm based on compressive sensing[J]. Infrared and Laser Engineering, 2013, 42(S1): 225-232.
    Mohimani H, Babaie-Zadeh M, and Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
  • 期刊类型引用(8)

    1. 孙晓翰,李凉海,张彬. 基于CNN-LSTM神经网络的前视成像算法. 遥测遥控. 2024(02): 29-36 . 百度学术
    2. 李沛洲,杨勇,李术,班亚龙,常军. 时频同步误差影响双基地SAR成像效果的仿真系统设计. 电讯技术. 2024(11): 1826-1835 . 百度学术
    3. 赵烜靖,陈晔,莫亚军. 一种弹载SAR图像目标定位方法. 舰船电子对抗. 2024(06): 6-10 . 百度学术
    4. 詹珩艺,李亚超,武春风,宋炫,张廷豪. 弹载双基前视成像雷达解析-迭代定位方法. 系统工程与电子技术. 2023(01): 71-78 . 百度学术
    5. 唐军奎,刘峥,冉磊,谢荣,秦基凯. 基于稀疏和低秩先验的雷达前视超分辨成像方法. 雷达学报. 2023(02): 332-342 . 百度学术
    6. 陈洪猛,余继周,张文杰,李亚超,李军,蔡良,鲁耀兵. 基于概率模型驱动的机载贝叶斯前视超分辨多目标成像方法. 雷达学报. 2023(06): 1125-1137 . 百度学术
    7. 吴元. 一种基于参数更新的机载SAR图像目标定位方法. 电子与信息学报. 2019(05): 1063-1068 . 本站查看
    8. 马园,欧阳缮,廖可非,李晶晶. 基于随机频偏调制的频率分集阵雷达通信一体化波形. 桂林电子科技大学学报. 2019(04): 259-266 . 百度学术

    其他类型引用(2)

  • 加载中
计量
  • 文章访问数:  1531
  • HTML全文浏览量:  129
  • PDF下载量:  867
  • 被引次数: 10
出版历程
  • 收稿日期:  2014-06-30
  • 修回日期:  2015-03-03
  • 刊出日期:  2015-06-19

目录

    /

    返回文章
    返回