高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向VR应用的花卉植物物理渲染技术研究与实现

淮永建 张晗 张帅

淮永建, 张晗, 张帅. 面向VR应用的花卉植物物理渲染技术研究与实现[J]. 电子与信息学报, 2018, 40(7): 1627-1634. doi: 10.11999/JEIJ170995
引用本文: 淮永建, 张晗, 张帅. 面向VR应用的花卉植物物理渲染技术研究与实现[J]. 电子与信息学报, 2018, 40(7): 1627-1634. doi: 10.11999/JEIJ170995
HUAI Yongjian, ZHANG Han, ZHANG Shuai. Research and Implementation on Flower Plants Rendering Technology Based on Physical Light Simulation for VR Application[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1627-1634. doi: 10.11999/JEIJ170995
Citation: HUAI Yongjian, ZHANG Han, ZHANG Shuai. Research and Implementation on Flower Plants Rendering Technology Based on Physical Light Simulation for VR Application[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1627-1634. doi: 10.11999/JEIJ170995

面向VR应用的花卉植物物理渲染技术研究与实现

doi: 10.11999/JEIJ170995
基金项目: 

国家自然科学基金(31770589),北京林业大学创新团队项目(2015ZCQ-XX)

详细信息
    作者简介:

    淮永建: 男,1970年生,教授,博士生导师,研究方向为虚拟现实技术及可视化. 张 晗: 女,1993年生,硕士生,研究方向为虚拟植物及交互技术. 张 帅: 男,1990年生,初级工程师,研究方向为虚拟现实及可视化.

  • 中图分类号: TP391

Research and Implementation on Flower Plants Rendering Technology Based on Physical Light Simulation for VR Application

Funds: 

The National Natural Science Foundation of China (31770589), The Innovation Team Project of Beijing Forestry University (2015ZCQ-XX)

  • 摘要: 花卉植物高真实感的仿真交互是目前虚拟植物可视化研究的一个重要方向。随着虚拟现实技术的普及,越来越多的应用采用了VR头戴设备的呈现方式。VR系统需要高度真实的沉浸感画面,通用的植物建模和图形引擎渲染功能已不能满足该需求。该文通过分析光照原理并融合基于物理的渲染技术,提出基于双向散射分布函数BSDF的花卉植物高度真实感的物理渲染算法,利用ShaderLab,对几种盆栽花卉植物在光照下进行仿真,并对融合算法做优化处理。针对VR头盔设备HTC Vive的成像效果,对图像进行扭曲变形优化,使画面更符合人眼双目立体视觉成像效果,增强系统沉浸感。最后基于该方法设计并实现了一个头盔式VR花卉植物仿真模拟系统,获得了逼真的场景漫游体验效果。
  • 巫影, 何琳, 黄映云, 等. 虚拟现实技术综述[J]. 计算机与数字工程, 2002, 30(3): 41-44.

    doi: 10.3969/j.issn.1672-9722. 2002.03.007.
    WU Ying, HE Lin, HUANG Yingyun, et al. Summarizing of virtual reality technology[J]. Computer and Digital Engineering, 2002, 30(3): 41-44. doi: 10.3969/j.issn.1672- 9722.2002.03.007
    MA Wei and ZHA Hongshan. Realistic rendering of small- scale plants[J]. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(4): 505-510.
    HUAI Yongjian and ZENG Xi. Visual simulation of morphology and growth of virtual flower plants[J]. Computer Engineering and Applications, 2012, 48(8): 185-188. doi: 10.3778/j.issn.1002-8331.2012.08.053.
    MA Ruishi and BAI Shunxian. Image based plant leaves wither deformation measurement simulation[J]. Computer Simulation, 2012, 29(10): 302-305. doi: 10.3969/j.issn.1006- 9348.2012.10.072.
    ZHANG Ming. Research and realization of dynamic simulation technology for 3D diversion process[D]. [Master dissertation], Xiamen University, 2009.
    HUAI Yongjian and LI Fan. Simulation on motion behavior of virtual flower in variable wind fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(19): 130-136. doi: 10.3969/j.issn.1002-6819.2012.19.017.
    MENG Xiangyan, REN Yumiao, and PAN Haixian. Algorithm for illumination and shadow model in realistic volume rendering[J]. Laser Journal, 2016, 37(8): 141-144. doi: 10.14016/j.cnki.jgzz.2016.08.141.
    ZHAO Hui. Simulation of vegetation realism based on radiation method[D]. [Master dissertation], Jilin University, 2014.
    TANG Yong, ZHANG Lihui, L? Mengya, et al. Research progress in real time modeling and rendering for realistic ocean scene[J]. Journal of Yanshan University, 2016, 40(6): 471-480. doi: 10.3969/j.issn.1007-791X.2016.06.001.
    CHEN Shengyu. Drawing and dynamic simulation of complex vegetation scene based on GPU[D]. [Master dissertation], University of Electronic Science and Technology of China, 2016.
    [11] GAO Yuan, LIU Yue, CHENG Dewen, et al. A review on development of head mounted display[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 896-904. doi: 10.3969/j.issn.1003-9775.2016.06.004.
    XIE Yonghua, YUAN Fuxing, and WANG Chang. Research of 3D cloud illumination model based on importance sampling[J]. Journal of System Simulation, 2016, 28(1): 57-62.
    [13] KAJIYA J T. The rendering equation[J]. ACM Siggraph Computer Graphics, 1986, 20(4): 143-150. doi: 10.1145/15922. 15902.
    [14] STAM J. Diffraction shaders[J]. Proc Acm Siggraph, 1999, 11(4): 101-110. doi: 10.1145/311535.311546.
    [15] SADEGHI I, LAVEN P, LAVEN P, et al. Physically-based simulation of rainbows[J]. Acm Transactions on Graphics, 2012, 31(1): 3. doi: 10.1145/2077341.2077344.
    WU Fukun, WU Jiaze, and ZHENG Changwen. A microfacet-based physically rendering of diffraction effects[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(1):1-9.
    [17] TORRANCE K E and SPARROW E M. Theory for off-specular reflection from roughened surfaces[J]. Journal of the Optical Society of America, 1967, 57(9): 1105-1114. doi: 10.1364/JOSA.57.001105
    [18] OBERST H, KOUZNETSOV D, SHIMIZU K, et al. Fresnel diffraction mirror for an atomic wave[J]. Physical Review Letters, 2005, 94(1): 013203. doi: 10.1103/PhysRevLett.94. 01320314JANUARY2005.
    [19] SCHLICK C. An inexpensive BRDF model for physically- based rendering[J]. Computer Graphics Forum, 1994, 13(3): 233-246. doi: 10.1007/s00371-014-0958-x.
  • 加载中
计量
  • 文章访问数:  1645
  • HTML全文浏览量:  179
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-24
  • 修回日期:  2018-03-28
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回