多个具有非零均值复乘性噪声的复谐波信号循环估计量的性能分析
PERFORMANCE ANALYSIS OF CYCLIC ESTIMATORS FOR MULTIPLE HARMONICS IN COMPLEX NONZERO MEAN MULTIPLICATIVE NOISES
-
摘要: 从雷达等探测系统需要的频率估计出发,文中研究了利用循环平稳方法估计多个具有非零均值随机乘性噪声的复谐波信号参数的方法,并分析了其渐近统计性能,结果表明循环均值可用来恢复多个具有任意分布的非零均值有色乘性噪声的复谐波信号,且所得的谐波参数估计的均方差与相应的Cramer-Rao界具有相同的数量级。模拟结果验证了所得结果的正确性。Abstract: The concern here is retrieval of multiple tone harmonics observed in complex-valued multiplicative noises with nonzero mean. Cyclic mean statistics have proved to be useful for harmonic retrieval in the presence of complex-valued multiplicative noises with nonzero mean of arbitrary colors and distributions. Performance analysis of cyclic estimators is carried through and large sample variance expressions of the cyclic estimators are derived. Simulations validate the large sample performance analysis.
-
Zhou G, Giannakis G B. Harmonics in multiplicative and additive noise: performance analysis of cyclic estimators. IEEE Trans. on SP, 1995, SP-43(6): 1445-1460.[2]Zhou G, Giannakis G B. Harmonics in Gaussian multiplicative and additive noise: Cramer-Rao bounds. IEEE Trans. on SP, 1995, SP-43(5): 1217-1231.[3]Van Trees H L. Detection, Estimation and Modulation Theory: Part Ⅲ, Radar-Sonar Signal Processing and Gaussian Signals in Noise, New York: Wiley, 1971, ch. 9-11.[4]Picinbono B. Second-order complex random vectors and normal distributions. IEEE Trans. on[5]SP: 1996, SP-44(10): 2637-2640.
计量
- 文章访问数: 2056
- HTML全文浏览量: 105
- PDF下载量: 397
- 被引次数: 0