高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广播新闻语料识别中的自动分段和分类算法

吕萍 颜永红

吕萍, 颜永红. 广播新闻语料识别中的自动分段和分类算法[J]. 电子与信息学报, 2006, 28(12): 2292-2295.
引用本文: 吕萍, 颜永红. 广播新闻语料识别中的自动分段和分类算法[J]. 电子与信息学报, 2006, 28(12): 2292-2295.
Lü Ping, Yan Yong-hong. Audio Segmentation and Classification in a Broadcast News Task[J]. Journal of Electronics & Information Technology, 2006, 28(12): 2292-2295.
Citation: Lü Ping, Yan Yong-hong. Audio Segmentation and Classification in a Broadcast News Task[J]. Journal of Electronics & Information Technology, 2006, 28(12): 2292-2295.

广播新闻语料识别中的自动分段和分类算法

Audio Segmentation and Classification in a Broadcast News Task

  • 摘要: 该介绍了中文广播新闻语料识别任务中的自动分段和自动分类算法。提出了3阶段自动分段系统。该方法通过粗分段、精细分段和平滑3个阶段,将音频流分割为易于识别的音频段。在精细分段阶段,文中提出两种算法:动态噪声跟踪分段算法和基于单音素解码的分段算法。仿效说话人鉴别中的方法,文中提出了基于混合高斯模型的分类算法。该算法较好地解决了音频段的多类判决问题。在新闻联播测试数据中的实验结果表明,该文提出的自动分段和分类算法性能与手工分段分类性能几乎相当。
  • David Graff. An overview of broadcast news corpora[J].Speech Communication.2002, 37(1):15-26[2]Pallett D S. A look a NISTs benchmark ASR tests: Past, present,and future. IEEE 2003 Automatic Speech Recognition and Understanding workshop, U S. Virgin Islands, 30 Nov.-3 Dec., 2003: 483 - 488.[3]Wayne C. Mutilingual topic detection and tracking: Successful research enabled by corpora and evaluation. Language Resources and Evaluation Conference (LREC), Athens, Greece, 31 May-2 June, 2000: 1487-1494.[4]David S. Automatic transcription of broadcast news data[J].Speech Communication.2002, 37(1):1-2[5]Robinson A J. Connectionist speech recognition of broadcast news[J].Speech Communication.2002, 37(1):27-45[6]Woodland P C. The development of the HTK broadcast news transcription system: An overview[J].Speech Communication.2002, 37(1):47-67[7]Hung Jeih-Weih. Automatic metric-based speech segmentation for broadcast news via principal component analysis. In International Conference on Spoken Language Processing (ICSLP) 2000, Beijing China, October 16-20, 2000, (4): 121-124.[8]Cheng Shi-sian. A sequential metric-based audio segmentation method via the Bayesian information criterion. EuroSpeech 2003, Geneva, Switzerland, Sep. 1-4, 2003: 945-948.[9]Lin L. Speech enhancement for nonstationary noise environment. Asia-Pacific Conference on Circuits and Systems, 2002, Singapore, Oct. 28-31, 2002, Vol(1): 177-180.[10]Yamamoto H. Parameter sharing and minimum classification error training of mixtures of factor analyzers for speaker identification. IEEE International Conference on Acoustics Speech and Signal Processing 2004, Montreal Canada, May 17-21, 2004, Vol(1): 17-21.[11]Legetter C J. Maximum likelihood linear regression for speaker adaptation of continuous density HMMs[J].Computer Speech and Language.1995, 9(2):171-186
  • 加载中
计量
  • 文章访问数:  2525
  • HTML全文浏览量:  112
  • PDF下载量:  1112
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-04-06
  • 修回日期:  2005-09-20
  • 刊出日期:  2006-12-19

目录

    /

    返回文章
    返回