基于四阶累积过的阵列扩展
FOURTH-ORDER CUMULANT BASED ARRAY EXTENSION IN DIRECTION-FINDING
-
摘要: 在阵列测向问题中应用高阶累积量除了信息利用更充分和抑制高斯噪声等优点之外还具有阵列扩展的功能.本文推导了基于四阶累积量的阵列扩展方法,研究了虚拟阵的结构.放宽了协方差方法对信源数目的限制.但该方法在窄带多信号方向估计应用中存在局限.本文还推导了四阶相干问题和阵列扩展的限制条件.最后给出了实验举例.
-
关键词:
- 阵列; 信号处理; 测向; 高阶累积量
Abstract: In the array processing problem, the high-order cumulants not only are capable to reduce the Gaussian noises but also have the aperture extension property. The method of the aperture extension using the fourth-order cumulants are studied and the structure of the corresponding virtual array are presented in this paper. The fourth-order coherent problem in the application in the narrow-band direction-finding system is given and analyzed. We obtain the array aperture extension condition of the fourth-order cumulant-based method to the multiple sources case. The numerical results support the analytic results. -
Mendel J M. Tutorial on higher-order statistics(spectra) in signal processing and system theory:[2]Theoretical results and some applications. Proc[J].IEEE.1991, 79(3):278-305[3]Pan P, Nikias C L. Harmonic decomposition methods in cumulant domains. Proc. Int. Conf. ASSP, New York: April 1988, 2356-2359.[4]Swami A, Mendel J M. Cumulant-based approach to the harmonic retrieval and related problems.[5]IEEE Trans. on SP, 1991, SP-39(5): 1099-1109.[6]Porat B, Friedlander B. Direction-finding algorithms based on high-order statistics. IEEE Trans. on SP, 1991, SP-39(9): 2016-2023.[7]魏平,肖先踢,李乐民.基于四阶累积量特征分解的空间谙估计测向方法.电子科学学刊,1995, 17(3): 243-249.[8]Dogan M C, Mendel J M. Application of cumulants to array processing Part I: Aperture extension and array calibration, IEEE Trans. on SP, 1995, SP-43(5): 1200-1216.[9]Dogan M C, Mendel J M. Application of cumulants to array processing part 11: Non-Gaussian noise suppression, IEEE Trans. on SP, 1995, SP-43(7): 1663-1676.
计量
- 文章访问数: 2071
- HTML全文浏览量: 134
- PDF下载量: 539
- 被引次数: 0