高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最小二乘支持向量机的衰落信道预测算法

相征 张太镒 孙建成

相征, 张太镒, 孙建成. 基于最小二乘支持向量机的衰落信道预测算法[J]. 电子与信息学报, 2006, 28(4): 671-674.
引用本文: 相征, 张太镒, 孙建成. 基于最小二乘支持向量机的衰落信道预测算法[J]. 电子与信息学报, 2006, 28(4): 671-674.
Xiang Zheng, Zhang Tai-yi, Sun Jian-cheng . Prediction Algorithm for Fast Fading Channels Based on Recurrent Least Squares Support Vector Machines[J]. Journal of Electronics & Information Technology, 2006, 28(4): 671-674.
Citation: Xiang Zheng, Zhang Tai-yi, Sun Jian-cheng . Prediction Algorithm for Fast Fading Channels Based on Recurrent Least Squares Support Vector Machines[J]. Journal of Electronics & Information Technology, 2006, 28(4): 671-674.

基于最小二乘支持向量机的衰落信道预测算法

Prediction Algorithm for Fast Fading Channels Based on Recurrent Least Squares Support Vector Machines

  • 摘要: 该文探讨了利用相空间重构和支持向量机进行衰落信道非线性预测算法。该算法基于多径衰落信道具有混沌行为,利用坐标延迟理论,重建衰落信道系数的相空间,再根据混沌吸引子的稳定性和分形性,在相空间中通过递归最小二乘支持向量机(RLS-SVM)进行预测。该算法对原始数据可以进行更平滑的处理,在噪声环境下预测的时间范围更长。对时间跨度为63.829ms的衰落系数进行了预测,仿真结果表明,在信噪比为15dB时,预测结果优于AR算法。
  • 胡刚, 朱世华, 谢波. 基于混沌、分形理论的多径衰落分析[J].电子学报,2003,31(7): 1039-1042.[2]Tannous C, Davies R, Angus A. Strange attractors in multipath propagation [J].IEEE Trans. on Comm.1991, 39(5):629-631[3]Eyceoz T, Duel-Hallen A, Hallen H. Prediction of fast fading parameters by resolving the interference pattern. Proceedings of the 31st ASILOMAR Conference on Signals, Systems, and Computers[C]. Pacific Grove, CA, 1997: 167-171.[4]Ekman T, Kubin G.Nonlinear prediction of mobile radio channels: Measurements and MARS model designs, In Proc. Int. Conf. Acoust. Speech Sig. Process[C]. Phoenix, AZ, March 1999: 2667-2670.[5]Gao X M, Tanskanen J M A, Ovaska S J. Comparison of linear and neural network-based power prediction schemes for mobile DS/CDMA systems.VTC96[C]. Atlanta: IEEE press,1996: 61-65.[6]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995: 91-108.[7]Wang L P(Ed.). Support Vector Machines: Theory and Application[M]. New York, Berlin, Heidelberg: Springer, 2005: 51-123.[8]Vapnik V. The Nature of Statistical Learning Theory[M]. Translated by Zhang Xuegong. Beijing: Tsinghua University Press, 2000: 91-108.[9]Suykens J A K, Vandewalle J. Least squares support vector machines[J].Neurel Processing Letters.1999, 9(3):293-300[10]Suykens J A K, Vandewalle J. Recurrent least squares support sector machines[J].IEEE Trans. on Circuits and System-I: Fundamental Theory and Applications.2000, 47(7):1109-1114[11]Takens F . Detecting strange attractors in fluid turbulence. In D. Rand and L.S.Young, editors, Dynamical systems and Turbulence [M]. Berlin: Springer-Verlag, 1981: 366-381.[12]Jakes W C. Microwave Mobile Communications[M]. Piscataway, USA: IEEE Press, 1974, chapter1: 13-77.[13]Cao L. Practical method for determining the minimum embedding dimension of a scalar time series[J].Physcai D.1997, 110(7):43-50[14]Grassberger P, Procaccia I. Characterization of strange attractors[J].Physical Review Letters.1983, 50(5):346-349[15]Wolf A, Swift J B, Swinney H L. Determining Lyapunov exponents from a time series[J].Physica D.1985, 16(2):285-317
  • 加载中
计量
  • 文章访问数:  2288
  • HTML全文浏览量:  80
  • PDF下载量:  985
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-06-24
  • 修回日期:  2006-01-11
  • 刊出日期:  2006-04-19

目录

    /

    返回文章
    返回