基于粗集与遗传算法相结合的文本模糊聚类方法
Text Fuzzy Clustering Algorithm Based on Rough Set and Genetic Algorithm
-
摘要: 该文将粗集与遗传算法相结合的方法成功应用于文本模糊聚类.在聚类过程中,将权重参数的设定也通过编码由遗传算法确定,从而使得权重参数的设定具有科学性和可操作性,避免了在类似算法中确定权重时的主观性和不可靠性.最后的实例说明了算法的可行性.
-
关键词:
- 粗集;遗传算法;文本挖掘;模糊聚类
Abstract: This paper presents a text fuzzy clustering algorithm which combines rough set and genetic algorithm fully. In the clustering process, the weight parameters are also described by genetic algorithm, thus it makes parameters more reasonable and operationable and avoids subjectivity and unreliability of describing weight parameters in the similar algorithms proposed by other researchers. The example demonstrates the feasibility of the algorithm. -
王伟强,高文.Internet上的文本数据挖掘[J]计算机科学,2000,27(4):32-37.[2]Krishnapuram R, Joshi A,Yi L. A fuzzy relative of the k-Medoids algorithm with application to web document and snippet clustering[A]. Proc. IEEE Intl. Conf. Fuzzy Systems-FUZZ IEEE 1999[C], Korea. 1999-08, Vol.3:1281 - 1286.[3]李家福,张亚菲,陆建江.模糊聚类算法在汉语文本聚类中的应用[J].计算机工程,2002,28(4):15-16.[4]Pawan Lingras. Unsupervised rough set classification using GAs[J].Journal of Intelligent Information Systems.2001, 16(3):215-[5]Pawan Lingras. Rough set clustering for web mining. Proc of the 2002 IEEE Conf. on Fuzzy Systems, USA, 2002, Vol.2:1039 - 1044.[6]郭嗣琮.信息科学中的软计算方法[M].沈阳:东北大学出版社,2001年11月:263-279.[7]史忠植.知识发现[M].北京:清华大学出版社,2002年1月:359-360.
计量
- 文章访问数: 2338
- HTML全文浏览量: 112
- PDF下载量: 724
- 被引次数: 0