复数旋转码及其对偶码的超限译码
DECODING BEYOND THE BOUND OF THE COMPLEX-ROTARY CODES AND ITS DUAL CODES
-
摘要: 本文讨论了复数旋转码及其对偶码的超限译码能力,得到了t=(P+1)/2时复数旋转码可以纠Ct+1p2+p(p-1)-p2Ctp+1个t+1错;其对偶码可以纠Ct1+1p2+2t1p-2tpCt1+1p+1个t1+1错,这里t1=[(p+1)/2]-1, p为素数。
-
关键词:
- 复数旋转码; 对偶码; 超限译码
Abstract: The capabilities of decoding beyond the bound of the. complex-rotary codes and its dual codes are analysed. It is obtained that the complex-rotary codes with t = (p+1)/2 can correct Ct+1p2+p(p-1)-p2Ctp+1 errors of (t +1) and its dual codes can correct Ct1+1p2+2t1p-2tpCt1+1p+1 errors of (t1+1), where t1= [(p+1)/2]-1 and p is a prime. -
E. R. Berlekamp,Algebraic Coding Theory, McGraw-Hill Book Company,1968.[2]C.R. P. Hartmann, IEEE Trans. on IT, IT-26 (1972), 441-444.[3]Jin Fan, An Investigation on New Complex-Rotary Code, A paper presented at IEEE 1985 Jnternational Symposium On Information Theory, Brighton, England,(1985), 1-8.[4]靳蕃,通信学报,1986年,第2期,62-69.[5]靳蕃,铁道学报,1986年,第1期,6-64.[6]S. Lin著,陈太一译,纠错码人门,人民邮电出版社,1976年.[7]袁毅,复数旋转码性能的研究及计算机模拟分析,西南交通大学硕士论文,1988.
计量
- 文章访问数: 2020
- HTML全文浏览量: 86
- PDF下载量: 303
- 被引次数: 0