高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于核函数Fisher鉴别的异常入侵检测

周鸣争

周鸣争. 基于核函数Fisher鉴别的异常入侵检测[J]. 电子与信息学报, 2006, 28(9): 1727-1730.
引用本文: 周鸣争. 基于核函数Fisher鉴别的异常入侵检测[J]. 电子与信息学报, 2006, 28(9): 1727-1730.
Zhou Ming-zheng. An Anomaly Intrusion Detection Based on Kernel Fisher Discriminant[J]. Journal of Electronics & Information Technology, 2006, 28(9): 1727-1730.
Citation: Zhou Ming-zheng. An Anomaly Intrusion Detection Based on Kernel Fisher Discriminant[J]. Journal of Electronics & Information Technology, 2006, 28(9): 1727-1730.

基于核函数Fisher鉴别的异常入侵检测

An Anomaly Intrusion Detection Based on Kernel Fisher Discriminant

  • 摘要: 将核函数方法引入入侵检测研究中,提出了一种基于核函数Fisher鉴别的异常入侵检测算法,用于监控进程的非正常行为。首先分析了核函数Fisher鉴别分类算法应用于入侵检测的可能性,然后具体描述了核函数Fisher鉴别算法在异构数据集下的推广,提出了基于核函数Fisher鉴别的异常入侵检测模型。并以Sendmail系统调用序列数据集为例,详细讨论了该模型的工作过程。最后将实验仿真结果与其它方法进行了比较,结果表明,该方法的检测效果优于同类的其它方法。
  • Anup K Ghosh, Aaron Schwartzbard. A study in using neuralnetworks for anomaly and misuse detection. The 8th USENIX Security Symposium, Washington D C, 1999: 46-57.[2]Balajinath B, Raghavan S V. Intrusion detection through learning behavior model[J].Computer Communications.2001, 24(12):1202-1212[3]Jha S, Tan K, Maxion R A. Markov Chains, classifiers and intrusion detection. The 14th IEEE Computer Security Foundations Workshop, Canada, 2001: 206-215.[4]张箭, 龚俭. 一种基于模糊综合评判的入侵异常检测方法. 计算机研究与发展, 2003, 40(6): 776-782.[5]Fisher R A. The statistical utilization of multiple measurements. Annals of Eugenics, 1938, 6(8): 376-386.[6]Wilson D, Martinez R. Improved heterogeneous distance functions. Journal of Artificial Intelligence Research, 1997, 6(1): 1-34.[7]Lee W, Stolfo SJ. A data mining framework for building intrusion detection medel, In: Gorgl, Keiter M K, eds. Proceedings of He 1999 IEEE Symposium on Security and Privacy, Oakland, CA, IEEE Computer Society Press, 1999: 120-132.[8]Forrest S, Hofmeyr S A, et al.. A sense of self for unix process. In: Proceedings of 1996 IEEE Symposium on Computer Security and Privacy, Canada, 1996: 120-128.[9]Lee W, Stolfo S, Chan P. Learning patterns from unix process execution traces for intrusion detection. In: Proceeding of AAAI Workshop: AI Approaches to Fraud Detection and Risk Management, Washington D C, 1997: 191-197.
  • 加载中
计量
  • 文章访问数:  2277
  • HTML全文浏览量:  151
  • PDF下载量:  925
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-01-10
  • 修回日期:  2005-06-21
  • 刊出日期:  2006-09-19

目录

    /

    返回文章
    返回