高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于形变模型的图像分割技术综述

张丽飞 王东峰 时永刚 邹谋炎

张丽飞, 王东峰, 时永刚, 邹谋炎. 基于形变模型的图像分割技术综述[J]. 电子与信息学报, 2003, 25(3): 395-403.
引用本文: 张丽飞, 王东峰, 时永刚, 邹谋炎. 基于形变模型的图像分割技术综述[J]. 电子与信息学报, 2003, 25(3): 395-403.
Zhang Lifei, Wang Dongfeng, Shi Yonggang, Zou Mouyan. A survey of image segmentation techniques using deformable models[J]. Journal of Electronics & Information Technology, 2003, 25(3): 395-403.
Citation: Zhang Lifei, Wang Dongfeng, Shi Yonggang, Zou Mouyan. A survey of image segmentation techniques using deformable models[J]. Journal of Electronics & Information Technology, 2003, 25(3): 395-403.

基于形变模型的图像分割技术综述

A survey of image segmentation techniques using deformable models

  • 摘要: 基于形变模型的图像分割技术是近年来兴起的一种新型图像分割方法,已有相当广泛的研究。该技术为如何有效地从图像中分割出不规则对象及自然对象指出了一条佳径。该文简要介绍基于形变模型图像分割技术的基本原理和发展历程。按技术发展的线索介绍各种典型的形变模型表示形式,提出各种表示形式的优缺点,分析基于形变模型的图像分割的各种技术所存在的缺点,并建议了可能的研究方向。
  • [1] M. Kass, A. Witkin, D. Terzopoulos, Snakes.[J].active contour models, Intl J. Comp. Vis.1987,1(4):321-331 [2] A.A. Amini, T. E. Weymouth, R. C. Jain, Using dynamic programming for solving variational problems in vision, IEEE Trans. on Patt. Anal. Mach. Intell., 1990, 12(9), 855-867. [3] L.D. Cohen, On active contour models and balloons, CVGIP: Imag. Under., 1991, 53(2), 211-218. [4] T. McInerney, D. Terzopoulos, A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis, Comp.Med. Image Graph., 1995, 19(1), 69-83. [5] V. Caselles, F. Catte, T. Coll, F. Dibos, A geometric model for active contours.[J]. Numerische Mathematik.1993,66:1- [6] R. Malladi, J. A. Sethian, B. C. Vemuri, Shape modeling with front propagation: a level set approach, IEEE Trans. on Patt. Anal. Mach. Intell., 1995, 17(2), 158-175. [7] V. Caselles.[J].R. Kimmel, G. Sapiro, Geodesic active contours, in Proc. 5th Intl Conf. Comp.Vis., Cambridge, MA.1995,:- [8] R.T. Whitaker, Volumetric deformable models: active blobs, Tech. Rep. ECRC-94-25, European Computer-Industry Research Center GmbH, 1994. [9] G. Sapiro, A. Tannenbaum, Afline invariant scale-space, Intl J. Comp. Vis., 1993, 11(1), 25-44. [10] L.D. Cohen, On active contour models and balloons, CVGIP: Imag. Under., 1991, 53(2), 211-218. [11] D. Terzopoulos, A. Witkin, M. Kass, Constraints on deformable models: recovering 3D shape and nonrigid motion, Artificial Intelligence, 1988, 36(1), 91-123. [12] L.D. Cohen, I. Cohen, Finite-element methods for active contour models and balloons for 2-D and 3-D images, IEEE Trans. on Patt. Anal. Mach. Intell., 1993, 15(11), 1131-1147. [13] C. Xu, J. L. Prince, Generalized gradient vector flow external forces for active contours, Signal Processing-An International Journal, 1998, 71(2), 131-139. [14] C. Xu, J. L. Prince, Snakes, shapes, and gradient vector flow, IEEE Trans. on Imag. Proc., 1998,7(3), 359-369. [15] R. Durikovic, K. Kaneda, H. Yamashita, Dynamic contour: a texture approach and contour operations, The Visual Computer, 1995, 11(6), 277-289. [16] T. McInerney.[J].D. Terzopoulos, Topologically adaptable snakes, in Proc. 5th Intl Conf. Comp.Vis., Cambridge, MA.1995,:- [17] B.B. Kimia, A. R. Tannenbaum, S. W. Zucker, Shapes, shocks, and deformations I.[J].the components of two-dimensional shape and the reaction-diffusion space, Intl J. Comp. Vis.1995,15(3):189-224 [18] R. Kimmel, A. Amir, A. M. Bruckstein, Finding shortest paths on surfaces using level sets propagation, IEEE Trans. on Patt. Anal. Mach. Intell., 1995, 17(6), 635-640. [19] L. Alvarez, F. Guichard, P. L. Lions, J. M. Morel, Axioms and fundamental equations of image processing, Archive for Rational Mechanics and Analysis, 1993, 123(3), 199-257. [20] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Computational Physics, 1988, 79(1), 12-49. [21] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge, UK:Cambridge University Press, 2nd ed., 1999, 6-12. [22] J.A. Sethian, Curvature and evolution of fronts, Commun. Math. Phys., 1985, 101(4), 487-499. [23] J. A. Sethian, A review of recent numerical algorithms for hypersurfaces moving with curvature dependent speed, J. Differential Geometry, 1989, 31, 131-161. [24] V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, Intl J. Comp. Vis., 1997, 22(1),61-79. [25] A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, A. Tennenbaum, A geometric snake model for segmentation of medical imagery, IEEE Trans. on Med. Imag., 1997, 16(2), 199-209. [26] S. Kichenassamy, A. Kumar, P. Olver, A. Tennenbaum, A. Yezzi, Conformal curvature flows:from phase transitions to active vision, Arch. Rational Mech. Anal., 1996, 134, 275-301. [27] K. Siddiqi, Y. B. Lauzi ere, A. Tannenbaum, W. Zucker, Area and length minimizing flows for shape segmentation, IEEE Trans. on Imag. Proc., 1998, 7(3), 433-443. [28] L.H. Staib, J. S. Duncan, Boundary finding with parametrically deformable models, IEEE Trans.on Patt. Anal. Mach. Intell., 1992, 14(11), 1061-1075. [29] C. Nastar, N. Ayache, Frequency-based nonrigid motion analysis: application to four dimensional medical images, IEEE Trans. on Patt. Anal. Mach. Intell., 1996, 18(11), 1067-1079. [30] A. Pentland, B. Horowitz, Recovery of nonrigid motion and structure, IEEE Trans. on Patt.Anal. Mach. Intell., 1991, 13(7), 730-742. [31] D. Terzopoulos, D. Metaxas, Dynamic 3D models with local and global deformations: deformable superquadrics, IEEE Trans. on Patt. Anal. Mach. Intell., 1991, 13(7), 703-714. [32] T.F. Cootes, A. Hill, C. J. Taylor, J. Haslam, Use of active shape models for locating structures in medical images, Imag. Vis. Computing J., 1994, 12(6), 355-366. [33] T.F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, Active shape models-their training and application, Comp. Vis. Imag. Under., 1995, 61(1), 38-59. [34] Mario A. T. Figueiredo, Jose M. N., Anil K. Jain, Unsupervised contour representation and estimation using B-splines and a minimum description length criterion, IEEE Trans. on Imag.Proc, 2000, 9(6), 1075-1087. [35] C. Chesnaud, P. Refregier, V. Boulet, Statistical region snake-based segmentation adapted to different physical noise models, IEEE Trans. on Patt. Anal. Mach. Intell., 1999, 21(11), 1145-1157. [36] C. Chesnaud, V. Page, P. Refregier, Improvement in robustness of the statistically independent region snake-based segmentation method of target-shape tracking, Optics Letters, 1998, 23(7),488-490. [37] S. Fenster, J. Kender, Sectored snakes: evaluating learned-energy segmentations, IEEE Trans.on Patt. Anal. Mach. Intell., 2001, 33(9), 1028-1034. [38] N. Paragios, R. Deriche, Geodesic active contours and level sets for the detection and tracking of moving objects, IEEE Trans. on Patt. Anal. Mach. Intell., 2000, 22(3), 266-280. [39] MS. Horritt, DC. Mason, AJ. Luckman, Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model, Journal of Remote Sensing, 2001, 22(13),2489-2507. [40] A. Tsai, A. Yezzi, and A. Willsky, Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification, IEEE Trans. on Imag.Proc., 2001, 10(8), 1169-1184. [41] T. Chan, L. Vese, Active contours without edges, IEEE Trans. on Imag. Proc., 2001, 10(2),266-272.
  • 加载中
计量
  • 文章访问数:  2445
  • HTML全文浏览量:  100
  • PDF下载量:  963
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-10-22
  • 修回日期:  2002-02-28
  • 刊出日期:  2003-03-19

目录

    /

    返回文章
    返回