Bruns H.Grundlinien des Wissenschaftlichnen Rechnens[M].Leipzig,Personal Publication,1903.[2]Tufts D W,Sadasiv G.The arithmetic Fourier transform[J].IEEE ASSP Mag,1988,5(1):13-17.[3]Reed I S,Tufts D W,Xiao Yu,et al..Fourier analysis and signal processing by use of Mobius inversion formular[J].IEEE Trans.on Acoust,Speech,Signal Processing.1990,38(3):458-470[4]Reed I S,Shih M T,Troung T K,et al..A VLSI architecture for simplified arithmetic Fourier transform algorithms[J].IEEE Trans.on Acoust,Speech,Signal Processing,1993,40(5):1122-1132.[5]Lovine F P,Tantaratanas S.Some alternate realizations of the arithmetic Fourier transform.[C].Proceedings of the Twenty-Seventh Annual Asilomar Conference on Signals,Systems,and Computers,Pacific Grove,California,1993:310-314.[6]Ge Xi-Jin,Chen Nan-Xian,Chen Zhao-Dou.Efficient algorithm for 2-D arithmetic Fourier transform[J].IEEE Trans.on Signal Processing.1997,45(8):2136-2140[7]张宪超,武继刚,蒋增荣,陈国良.离散傅里叶变换的算术傅里叶变换算法[J].电子学报,2000,28(5):105-107.[8]张宪超,李宁,陈国良.离散余弦变换的改进的箅术傅里叶变换算法[J].电子学报,2000,28(9):88-90.[9]张宪超,陈国良,李宁.改进的算术傅里叶变换算法[J].电子学报,2001,29(3):329-331.[10]Wigley N Jullien.A sampling reduction for the arithmetic Fourier transform[C].Proc,32nd Midwest Symposium on Circuits and Systems,Champaign,IL,1990:841-844.[11]Knckaert L.A generalized Mobius transform,arithmetic Fourier transform,and primitive roots[J].IEEE Trans.on Signal Processing.1996,44(5):1307-1310[12]Schiff J,Walker W.The arithmetic Fourier transform.Analysis,geometry and groups:A Riemann legacy volume,Hadronic Press Collect.Orig.Artic.,Palm Harbor,FL,Hadronic Press,1993:613-625.[13]Walker W.The arithmetic Fourier transform and real neural networks:summability by primes[J].J.Math.Anal.Appl.1995,190:211-219.[14]Walker W.A summability method for the arithmetic Fourier transform[J].BIT.1994,34(2):304-309[15]Tufts D W,Chen H.Iterative realization of the arithmetic Fouier transform[J].IEEE Trans.Signal Processing.1993,41(1):152-161
|