董华春,宗成阁,权太范,高频雷达海洋回波信号的混沌特性分析,电子学报,2000,28(3),25-28.[2]H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cambridge, Cambridge University Press,2000, chapter 1.[3]郭双冰,肖先赐,几种混沌跳频码的混沌动力学特性及预测分析,系统工程与电子技术,2000,22(12),29-32.[4]F. Takens, Detecting strange attractors in fluid turbulence, 1981, Dynamical Systems and Turbulence, eds., D. Rand, L. S. Young, (Berlin, Springer), 366-381.[5]袁坚,肖先赐,低信噪比下的状态空间重构,物理学报,1997,46(7),1290-1299.[6]袁坚,肖先赐,淹没在噪声中的混沌信号的最大李亚普诺夫指数的提取,电子学报,1997,25(10),134-139.[7]N.H. Packard, J. P. Crutchfield, J. D. Farmer, R. S. Shaw, Geometry from a time series, Phys.Rev. Lett., 1980, 45(9), 712-716.[8]J.P. Eckmann, D. Ruelle, Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamic systems.[J]. Physica D.1992,56:185-[9]J. Theiler, Spurious dimension from correlation algorithms applied to limited time-series data,Phys. Rev. A, 1986, 34(3), 2427-2432.[10]M.T. Rosenstein, J. J. Collins, C. J. D. Luca, A practical method for calculating largest Lyapunov exponents from small data sets.[J]. Physica D.1993,65:117-[11]P. Grassberger, I. Procaccia, Measuring the strangeness attractors, Phys. Rev. Lett., 1983, 50(5),346-349.[12]肖先赐,混沌信号处理,电子对抗,2002,83(2),20-30.[13]G. Sugihara, R. M. May, Nonlinear forecasting as a way of distinguishing chaos from measure error in time series, Phys. Rev. Lett., 1990, 64(9), 734-741.
|