用Householder变换的递推AR模型化与谱估计算法
A RECURSIVE ALGORITHM FOR AR MODELING AND SPECTRAL ESTIMATION USING HOUSEHOLDER TRANSFORM
-
摘要: Housecholder变换用于上三角化是基于线性预测误差方程的数据阵。可以证明,由上三角阵的主对角元素便可得到各阶AR模型的残差平方和。因此用逐列处理的方法可以构成 AR 模型化与谱估计的递推算法。在大多数情况下,本文的算法不仅给出与协方差算法或修正协方差算法相同的计算结果;而且当计算中存在严重的数值病态问题时,协方差法和修正协方差法无法获得好的AR谱估计,而本文的算法则仍然可以获得好的估计。文中给出了典型的计算例子。Abstract: Householder transform is used to triangularize the data matrix which is based on the linear prediction error equation. It is proved that the sum of squared residuals for each AR order can be obtained by the main diagonal elements of upper triangular matrix, so the column by column procedure can be used to develop a recursive algorithm for AR modeling and spectral estimation. In the most cases, the presented algorithm yield the same results as the covariance method or modified covariance method does. But in some special cases where the numericall ill-conditioned problems are so serious that the covariance method and inodified covariance method fail to estimate AR spectrum, the presented algorithm still tends to keep good performance. The typical computational results are given finally.
-
S. L. Marple, Digital Spectral Analysis with Applications, Prentice-Hall Inc., NJ (1987).[2]S. M. Kay, S. L. Marple, Proc. IEEE, 69(1981), 1380-1419.[3]J. Makhoul, Proc. IEEE, 63(1975), 561-580.[4]Morf., et al., IEEE Trans. on ASSP, ASSP-25 (1977), 429-433.[5]S. L. Marple, IEEE Trans.on ASSP, ASSP-29 (1981), 62-73.[6]J. A. Cadzow et al., Proc. Inst. Elec. Eng., 130(1983), Part F, 202-210.[7]C.L.Lawson, R. J. Hanson, Solving Least Squares Problems, Englewood Cliffs, Prentice-Hall, NJ (1974).[8]Huang Junqin, Huili Yu, A Recursive Householder Algorithm for Identification and MA /AR Spectral Estimation, Seventh IFAC/IFORS Symposium on Iden. and System Parameter Esti.,Vol. 2, pp 1461-1466, July, (1985).[9]A. J. W. Van Den Boom, A. W. M. van Den Enden, Automatics, 10(1974), 245-256.[10]余辉里,AR谱估计的一种自适应算法,电子科学学刊,11(1989)4, 428-433.[11]M. Wax, IEEE Trans.on ASSP, ASSP-36 (1988), 581-588.[12]S. H. Leung, W. Y. Horng, Superresolution Autoregressive Spectral Estimation Technique Using Multiple Step Prediction, Proc. IEEE Int. Cont. ASSP, Vol. 1, pp 101-104, Mar. (1985).
计量
- 文章访问数: 2024
- HTML全文浏览量: 109
- PDF下载量: 608
- 被引次数: 0