n元H-布尔函数(Ⅱ)
ON THE H-BOOLEAN FUNCTIONS(Ⅱ)
-
摘要: 本文是杨义先以前工作(1988)的继续,利用特征矩阵分析n元H-布尔函数的结构性质,求出了目前为止最好的计数下界。
-
关键词:
- H-布尔函数; 密码特性; 构造和计数
Abstract: As the second part of author s serial research (1988), the cipher significant and structure properties of H-Boolean functions are investigated in further by the characteristic matrix. The best updated lower bounds are found for the enumeration of H-Boolean functions. -
杨义先.N元H-布尔函数.北京邮电学院学报,1988,11(3):1-9.[2]杨义先,胡正名.4维2阶Hadamard矩阵的分类.系统科学与数学,1987, 7(1): 40-46.[3]Shlichta P. Higher Dimensional Hadamard Matrices. IEEE Trans. on IT, 1979, IT-25(5): 825-826,[4]李世群,杨义先.5维2阶Hadamard矩阵计数问题的解决.北京邮电学院学报,1988, 11(2): 17-21.[5]潘新安,杨义先.5维2阶Hadamard矩阵的计数.北京邮电学院学报,1987, 10(4): 11-19.[6]Hammer J, Seberry J. Higher dimensional orthogonal designs and applications. IEEE Trans. on IT, 1981, IT-27(6): 772-779.[7]Launey W. A Note on N-dimensional Hadamard matrices of order 2t and Reed-Muuler codes. IEEE[8]Trans. on IT, 1991, IT-37(3): 664-666.[9]杨义先.n维2阶Hadamard矩阵.北京邮电学院学报,1991, 11(4): 1-8.[10]杨义先,林须端,胡正名.编码密码学.北京:人民邮电出版社,1992, 81-97; 225-229; 589-627.
计量
- 文章访问数: 2041
- HTML全文浏览量: 167
- PDF下载量: 449
- 被引次数: 0