基于子波滤波的并行分布式检测融合算法分析
Optimal distributed detection fusion analysis with parallel topology based on wavelet domain filter
-
摘要: 将软阈值决策子波域滤波算法与多传感器并行分布式检测融合系统有机地结合在一起,提出了多传感器并行分布式检测系统在Neyman-Pearson(N-P)准则下融合规则和局部判决规则之间相互关系的理论分析方法,完整地给出了两种次最佳系统和全局最佳系统判决规则的理论推导,并藉此理论对以上3种系统进行了瑞利噪声环境下的仿真,结果表明子波域滤波算法和多传感器并行分布式检测融合系统的同时引入明显提高了雷达探测系统的检测性能。Abstract: This paper presents a theoretical analysis in the sense of the Neyman-Pearson (N-P) test about the relationship between fusion rule and local decision rules in the parallel distributed detection fusion system with multiple sensors. It combines wavelet filter based on soft-threshold with the parallel distributed detection fusion system with multiple sensors ideally, and derives the determination of decision rules of two sub-optimal systems and globally optimal system completely. The detection performances of three systems above are computed numerically for the problem of detecting a known signal embeded in Rayleigh noise. The results obtained indicate that the presented method can enhance the radar detection performance remarkably.
-
E. Waltz, J. Llina, Multisensor Data Fusion, Boston: Artech House, 1990, Chapter 1-12.[2]Y. Yu, J. B. Weaver, et al., Wavelet transform domain filters: a spatial selective noise filteration technique, IEEE Trans. on Image Processing, 1994, IP-3(6), 747-757.[3]D.L. Donoho, De-noising by soft-thresholding, IEEE Trans. on IT, 1995, IT-41(3), 612-627.[4]R. Viswanathan, P. K. Varshney, Distributed detection with multiple sensors: Part I Fundamentals, Proc. IEEE, 1997, 85(1), 54-63.[5]R. Srinivasan, Distributed radar detection theory, IEE Proc.-F, 1986, 133(1), 55-60.[6]S.C.A. Thomopoulos, Optimal distributed decision fusion, IEEE Trans. on Aerospace and Electronic Systems, 1989, AES-25(5), 761-765.[7]G. Polychronopoulos, N. Tsitsiklis, Explicit solutions for some simple decentralized detection problems, IEEE Trans. on Aerospace and Electronic Systems, 1991, AES-26(2), 282-292.[8]R.S. Blum, Necessary conditions for optimum distributed sensor detectors under the NeymanPearson criterion, IEEE Trans. on IT, 1996, IT-42(3), 990-994.
计量
- 文章访问数: 2097
- HTML全文浏览量: 84
- PDF下载量: 520
- 被引次数: 0