多个序列综合问题的新模型及其应用
SYNTHESIS OF MULTISEQUENCES AND THEIR APPLICATIONS
-
摘要: 本文提出新的数学模型,用来刻划序列的综合问题,并将其推广,揭示了可用Grbner基理论解决序列的综合问题,并得到有效的算法,从而成功地开辟了解决多个序列综合问题的新途经.本文另一重要结果是给出了J.Justesen等构造的一类代数几何码(JAG码)的有效译码算法,此算法是Euclid算法的非平凡推广.Abstract: A new mathematical model, the linear homogeneous equations with polynomial coefficients for describing the synthesis problem, is presented in this paper. It gives a nature approach ro generalize the linear synthesis to nonlinear case. This method is used ro obtain a new solution for the multisequence synthesis. The Grbner bases theory in polynomial ring is used to present an efficient algorithm for the mathematical model. This turns out to be a generalization of Euclid algorithm. However, the new one has much brilliant prospects. As one of the important results, it is discovered that the new algorithm can be used to deduce an efficient decoding algorithm for a class of algebraic geometry codes constructed by Justesen, so the important open problem is solved.
-
冯贵良等,中国科学,A辑,1985年,第8期,第1-12页.[2]J. Justesen et al., IEEE Trans. on IT, IT-35(1989)4, 811-821.[3]A. N. Skorolwgatov et al., IEEE Trans. on IT, IT-36(1990)5, 1051-1061.[4]O. Zariski, Commutative Algebra II, Springer-Verlag, New York, (1960), pp 192-250.[5]B. Buchberger, Grbner Bases:[6]An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional[7]Systems Theory, Ed. by N. K. Bose, Springer-Verlag, Berlin, (1984), pp. 184-232.[8]H. Moller, J. Algebsa, 100(1986), 138-178.[9]S. Sakata, IEEE Trans. on IT, IT-37(1991)4, 1200-1203.
计量
- 文章访问数: 1861
- HTML全文浏览量: 104
- PDF下载量: 522
- 被引次数: 0