遗传算法中突变算子的数学分析及改进策略
MATHEMATICAL ANALYSIS OF MUTATION OPERATOR AND ITS IMPROVED STRATEGY IN GENETIC ALGORITHMS
-
摘要: 本文在简要介绍遗传算法的基础上,通过引入#em/em#位改进子空间的概念,对不同情形下突变概率的最优选取进行了分析,然后采用模糊推理技术来确定选取突变概率的一般性原则。良好的仿真结果显示了本文所提改进策略的有效性。Abstract: This paper analyzes the optimization problem of mutation probability (Pm) in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mutation probability in different conditions. The superior convergence property of the new method is evaluated by applying it to two simulation examples.
-
Rudolph G. IEEE Trans. on NN, 1994, NN-5(1): 96-101.[2]Holland J H. Adaptation in Natural and Artificial Systems, ANN Arbor: The Univ. of Michigan Press, 1975.[3]陈根社,陈新梅.信息与控制,1994,23(4): 215-222.[4]Janson D J, Frenzel J F. IEEE Expert, 1993, 8(5): 26-33.[5]Yasumasa I, Hiroaki K. IEICE Tans. Fundamentals, 1994, E77-A(4): 731-735.[6]Tomoharu N.Takeshi A[J].IEICE Trans. Information System.1993, E76-D(6):689-697[7]Zhang Liangjie, Mao Zhihong, Li Yanda. An Improved Genetic Algorithm Based on Combinative Theory Fuzzy Reasoning and its Applications, International Conference on Neural Information Processing, Korea: 1994, 180-185.[8]Hung S L, Adeli H. IEEE Trans on NN, 1994, NN-5(6): 900-909.[9]Grefenstette J J. IEEE Tans. on SMC, 1986, SMC-16(1): 122-128.[10]Goldberg D E. Genetic Algorithms in Search, Optimization and Learning. Addison Wesley Publishing Company, 1989, Chapter 4 and Chapter 5.
计量
- 文章访问数: 2287
- HTML全文浏览量: 108
- PDF下载量: 422
- 被引次数: 0