混沌时间序列的Volterra自适应预测滤波器定阶
Determining rank of volterra adaptive filter of chaotic time series
-
摘要: 由于Volterra自适应滤波器的阶数对预测性能有较大的影响,在实际预测中,如何确定Volterra自适应滤波器的最优阶数就成为一个关键问题,该文运用相空间重构理论,推导出了Volterra自适应滤波器的最优阶数等于混沌动力系统的最小嵌入维数,作者用六种混沌时间序列进行实验,结果表明这种定阶方法在混沌时间序列Volterra自适应预测中非常成功,该方法对噪声影响的变化,表现出较好的鲁棒性。Abstract: As the rank of Volterra adaptive filter interferes with predictive performance, how to determine the optimal rank of Volterra adaptive filter becomes a key problem in practical prediction. Using theory of phase space reconstruction, this paper derives that the optimal rank of Volterra adaptive filter equals the lowest embedding dimension of chaotic dynamical systems. It is shown through some chaotic series experiments that this method is successful in Volterra adaptive predication and robust to the noise of different levels added to the chaotic time series.
-
J.D. Framer, J. J. Sidorowich, Predicting chaotic time series, Phys. Rew. Lett., 1987, 59(8),845-848.[2]R. Gencay, Nonlinear prediction of noise time series with feedforward network, Phys. Lett. A,1994, 187(6), 397-403.[3]M. Casdal, Nonlinear prediction of chaotic time series, Physica D, 1989, 35(3), 335 356.[4]王明进,程乾生,Kohonen自组织网络在混沌时间序列预测中的应用,系统工程与理论实践,1997,17(7),12-18.[5]L. Cao, Y. Hong, H. Fang, G. He, Predicting chaotic time series using wavelet network, Physica D, 1995, 85(2), 225-238.[6]张家树,肖先赐,混沌时间序列的Volterra自适应预测,物理学报,2000,49(3),397-403.[7]I.W. Standberg, On Volterra expansions for time varying nonlinear systems, IEEE Trans. on Circuits and Systems, 1983, 30(2), 61-67.[8]S. Haykin, Adaptive Filter Theory, Englewood Cloffs, NJ, Prentice Hall, 1991, 432-439.[9]柳重堪,信号处理的数学方法,南京,东南大学出版社,1992,351-359.[10]Zoran Aleksic, Estimating the embedding dimension, Physica D, 1991, 52(3), 362-368.[11]叶中行,龙如军,混沌时间序列的区间预测,上海交通大学学报,1997,31(7),7-12. -
计量
- 文章访问数: 2109
- HTML全文浏览量: 86
- PDF下载量: 555
- 被引次数: 0