有源网络完全k树多项式的产生及其在网络分析中的应用
AN ALGORITHM FOR GENERATING ALL PASSIVE-EDGE COMPLETE k-TREE AND ITS APPLICATION IN THE ANALYSIS OF ACTIVE NETWORKS
-
摘要: 本文算法产生有源网络无源树边的完全k树多项式,算法时间复杂度与列写无向图全部树的改进的Minty算法相同。用该算法分析有源网络的符号函数可有效地减少对消冗余项数,同时也避免了对无源完全树边的符号鉴别问题。文章讨论了算法的合理性,并举例说明了它在网络分析中的应用。Abstract: An efficient algorithm for generating all passive-edge complete k-trees in symbolic form for general linear active networks is presented. This algorkhm, which is based on Minty s method, processes the topological graph of an active network directly. It can solve he problem of sign evaluation, and can reduce the number of cancellation terms greatly. Finally, an example is given to show its applicarion in the analysis of linear active networks.
-
G.J. Minty, IEEE Trans, on CT, CT-12 (1965)3, 119.[2]房大中,天津大学学报,1988年,第4期,第108页.[3]W. Mayeda.[J].Craph Theory, John Wiley Sons, Inc.1972,:-[4]W. K: Chen, IEEE Trans. on CT, CT-12 (1965)3, 85.[5]全茂达,朱英辉编,符号网络函数与不定导纳矩阵,高等教育出版社,1984年.[6]黄汝激,电子学报,1987年,第5期,第8页.
计量
- 文章访问数: 2149
- HTML全文浏览量: 164
- PDF下载量: 364
- 被引次数: 0