Scholkopf B, Smola A, Muller K. Nonlinear conponent analysis as a kernel eigenvalue problem[J].Neural Computation.1998, 10(5):1299-1319[2]Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach[J].Neural Computation.2000, 12(10):2385-2404[3]Kim K I, Jung K, Kim H J. Face recognition using kernel principal component analysis[J].IEEE Signal Processing Letters.2002, 9(2):40-42[4]Moghaddam B. Principal manifolds and probabilistic subspaces for visual recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, PAMI-24(6): 780-788.[5]Yang MH. Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. Proc.of 5th IEEE Int. Conf. on Autonatic Face and Gesture Recognition, Washington D. C., 2002:215-220.[6]Vapnik V. The Nature of Statistical Learning Theory, New York, NY: Wiley, 1998, Chapter 5.[7]Guo G, Li S Z, Chan K L. Support vector machine for face recognition[J].Image and Vision Computing.2001, 19(9-10):631-638[8]Mika S, Ratsch G, et al.. Fisher discriminant analysis with kernels. In Y. H. Hu, J. Larsen, E.Wilson, S. Douglas, ed., Neural Networks for Signal Processing, IEEE, 1999, IX: 41-48.[9]Scholkopf B, Smola A, et al.. New support vector algorithms[J].Neural Computation.2000, 12(5):1207-1245
|