高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法和BP算法的多层感知机杂交训练算法

穆文全 廖晓峰 虞厥邦

穆文全, 廖晓峰, 虞厥邦. 基于遗传算法和BP算法的多层感知机杂交训练算法[J]. 电子与信息学报, 1997, 19(2): 190-194.
引用本文: 穆文全, 廖晓峰, 虞厥邦. 基于遗传算法和BP算法的多层感知机杂交训练算法[J]. 电子与信息学报, 1997, 19(2): 190-194.
Mu Wenquan, Liao Xiaofeng, Yu Juebang. A HYBRID NEURAL NETWORK TRAINING ALGORITHM BASED ON GENETIC ALGORITHM AND BP ALGORITHM[J]. Journal of Electronics & Information Technology, 1997, 19(2): 190-194.
Citation: Mu Wenquan, Liao Xiaofeng, Yu Juebang. A HYBRID NEURAL NETWORK TRAINING ALGORITHM BASED ON GENETIC ALGORITHM AND BP ALGORITHM[J]. Journal of Electronics & Information Technology, 1997, 19(2): 190-194.

基于遗传算法和BP算法的多层感知机杂交训练算法

A HYBRID NEURAL NETWORK TRAINING ALGORITHM BASED ON GENETIC ALGORITHM AND BP ALGORITHM

  • 摘要: 基于梯度下降的神经网络训练算法易于陷入局部最小,从而使网络不能对输入模式进行准确分类。本文提出综合遗传算法和BP算法的杂交算法GA-QP,它结合遗传算法的全局搜索特性和BP的局部收敛特性,实现对神经网络的有效训练。实验表明该算法优于BP算法,实验结果令人满意。
  • Rumelhare D, McCelland J. Parallel distributer processing: Exploration in the microstructure of cognition. Cambridge: MIT Press, 198fi, 423-443, 472-486.[2]Madysstha R, et al. An algorithm for training multilayer perceptrons for data classification and[3]function interpolation. IEEE Trans. on CAS, 1994, CAS-41(12): 866-875.[4]Szu H. Non convex optimization. Proc. SPIE. San Diego: 1986, Real Time Signal Processing IX 698, 59-65.[5]Fahlman S E. test-learning variation on back-propagation: An empirical study. Proceedings of 1958[6]Cflnnectionist Models Summer School. San Msteo, CA: 1988, Morgan Kaufmann Publishers, 38-51.[7]Yaon B, et al. Efficient genetic algorithms for training layered feadforward neural network[J].Information Science.1994, 76(1):67-85[8]Kitano H. Empirical studies on the speed of convergence of neural network training using genetic algorithms. Proc. AAAI-90, 1990, MIT press, 789-795.[9]Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning. 13.eading: Addison Weaey Publishing Company, 19$9, Chapter 1-3.[10]DeJong K A. Genetic algorithms: A 10 year perspective. Proceedings of an International Conference[11]on Genetic Algorithms and Their Applications. Pittsburgh: 1985, Lawrence Erlbaum Associates Publishers, 169-177.[12]Bac F Q, Perov V L. Optimization problems[J].Biological Cybernetics.1993, 69(3):229-234[13]Anbati B, et al. Heuristic combinatorial optimisation by simulated Darwinian evoltion: a polynomial time algorithms for traveling salesman problem, Biological cybernetica, 1991, 85(1): 31-35.
  • 加载中
计量
  • 文章访问数:  2306
  • HTML全文浏览量:  159
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  1995-07-18
  • 修回日期:  1996-01-04
  • 刊出日期:  1997-03-19

目录

    /

    返回文章
    返回