高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

最大化算术-几何均值距离的多传感器遥感图像配准

时永刚

时永刚. 最大化算术-几何均值距离的多传感器遥感图像配准[J]. 电子与信息学报, 2006, 28(4): 582-586.
引用本文: 时永刚. 最大化算术-几何均值距离的多传感器遥感图像配准[J]. 电子与信息学报, 2006, 28(4): 582-586.
Shi Yong-gang. Multi-sensor Remote Sensing Image Registration by Maximization of Arithmetic-Geometric Mean Divergence[J]. Journal of Electronics & Information Technology, 2006, 28(4): 582-586.
Citation: Shi Yong-gang. Multi-sensor Remote Sensing Image Registration by Maximization of Arithmetic-Geometric Mean Divergence[J]. Journal of Electronics & Information Technology, 2006, 28(4): 582-586.

最大化算术-几何均值距离的多传感器遥感图像配准

Multi-sensor Remote Sensing Image Registration by Maximization of Arithmetic-Geometric Mean Divergence

  • 摘要: 互信息是多模态医学图像配准的一种重要方法。它测量的是两个概率分布之间的Kullback-Leibler(KL)距离。该文分析了KL距离和Shannon不等式之间的关系,在此基础上,提出了一种新的算术-几何均值距离,并将这一距离测度用于多传感器遥感图像的配准处理。与Kullback-Leibler距离不同,新的距离测度具有对称性,并且对概率值为0的情况不需要特殊处理。文中首先通过一维仿真信号对算术-几何(AG)测度进行了分析,并使用Thematic Mapper (TM), Satellite POsitioning and Tracking (SPOT)遥感图像和雷达图像进行了配准实验,验证了提出的新的算术-几何均值距离函数在配准多传感器遥感图像方面的有效性。与目前常用的相关系数的方法不同,这种新方法对于像素灰度值不具有线性关系的多传感器遥感图像能够实现配准处理。
  • Thomas S L, Fred S W. Optimum filters for image registration. IEEE Trans. on Aerospace and Electronic Systems, 1979, 15(6): 849860. .[2]Viola P, Wells W III. Alignment by maximization of mutual information. Proc. IEEE 5th Intl. Conf. Computer Vision, Boston, MA, USA, 1995: 16.23.Collignon A, Maes F, Vandermeulen D, et al.. Automated multimodality image registration using information theory. Proc. of the Information Processing in Medical Imaging Conference, Dordrecht, 1995: 263274. .[3]Maes F, Collignon A, Vandermeulen D, et al.. Multimodality image registration by maximization of mutual information. IEEE Trans. on Medical Imaging, 1997, 16(2): 187198. .[4]时永刚,邹谋炎. 基于算术-几何均值距离的多模态图像配准. 光学技术, 2004, 30(4): 409416. .[5]Pluim J P W, Maintz J B A, Viergever M A. Mutual information based registration of medical images: a survey. IEEE Trans. on Medical Imaging, 2003, 22(8): 9861004. .[6]Maes F, Vandermeulen D, Suetens P. Medical image registration using mutual information[J].Proc. IEEE.2003, 91(10):1699-[7]Ilya Z, Jacqueline L M. Application of multiresolution wavelet pyramids and gradient search based on mutual information to sub-pixel registration of multisensor satellite imagery. Proc. of SPIE Wavelets: Applications in Signal and Image Processing X, vol. 5207, San Diego, CA, USA, 2003: 666677. .[8]Xie H, Pierce L E, Ulaby F T. Mutual Information Based Registration of SAR Images. International Geoscience and Remote Sensing Symposium (IGARSS), Sponsored by IEEE, Toulouse, France 2003, vol. 6: 40284031. .[9]Kullback S, Leibler R A. On information and sufficiency. Annals of Mathematical Statistics, 1951, 22(1): 7986. .[10]Rached Z, Alajaji F, Campbell L L. The Kullback-Leibler divergence rate between markov sources. IEEE Trans. on Information Theory, 2004, 50(5): 917921. .[11]Do M N. Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models. IEEE Signal Processing Letters, 2003, 10(4): 115118. .[12]Chen C H. Statistical Pattern Recognition. Rochelle Park, NJ: Hayden, 1973, chapter 4.[13]Rassias T M. Survey on Classical Inequalities. Dordercht, the Netherlands, Kluwer Academic Publishers, 2000: 127.164.[14]Hardy G H, Littlewood J E, Polya G. Inequalities, 2nd edition, England, London, Cambridge University Press, 1952, chapter 2.[15]孙家抦主编. 遥感原理与应用. 第1版,武汉: 武汉大学出版社,2003年2月: 135.137.[16]Press W H, Teukolsky S A, Vetterling W T, et al.. Numerical Recipes in C: The Art of Scientific Computing. Cambridge, U.K.: Cambridge Univ. Press, 1999, chapter 10.
  • 加载中
计量
  • 文章访问数:  2814
  • HTML全文浏览量:  111
  • PDF下载量:  1258
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-11-23
  • 修回日期:  2005-06-07
  • 刊出日期:  2006-04-19

目录

    /

    返回文章
    返回