共轭对称数据的DFT及其FFT算法
DFT, FFT ALGORITHM FOR A COMPLEX CONJUGATE-SYMMETRIC SEQUENCE
-
摘要: 该文对共轭对称复数序列的离散傅里叶交换(DFT)及其快速傅里叶变换(FFT)算法进行了研究,获得共轭对称序列的DFT具有虚部为零的性质,并开发出适用于共轭对称数据的FFT算法。该算法与传统FFT算法相比减少了一半的计算量和存储单元,运算速度提高了一倍。Abstract: The discrete Fourier transform (DFT) and fast Fourier transform (FFT) for com-plex conjugate-symmetric input data are studied in this paper. The DFT of a complex conjugate-symmetric sequence has the nature that its imaginary part is zero. An efflcient FFT algorithm is developed for such a sequence. It reduces the computation and storage requirements by half comparing to the traditional FFT algorithm.
-
H.V.Sorensen,et al.,Real-valued fast Fourier transform algorithms,IEEE Trans.on ASSP,1987,ASSP-35(6),849-863.[2]Chen Jianping,H.V.Sorensen,An efficient FFT algorithm for real-symmetric data,Proc.IEEE ICASSP,San Fronsisco,1992,vol.5,17-20.[3]Lu Chao,R.Tolimiteri,New algorithm for the FFT computation of symmetric and translational complex conjugate sequences, Proc.IEEE ICASSP,San Fronsisco,1992,Vol.5,13-16.[4]A.V.Oppenheim,R.W.Schafer,Discrete-Time Signal Processing,Englewood Cliffs,New Jersy,Prentice-Hall,1989,581-609.[5]陈建平,H.V.sorensen,复数、实数及实对称数据下Bruun FFT的实现,苏州大学学报(自然科学),1995,11(4),107-114.[6]陈建平,曹清林.沈世德,对称连杆曲线的FFT应用研究,数据采集与处理,1997,12(3),243-246.
计量
- 文章访问数: 4490
- HTML全文浏览量: 239
- PDF下载量: 573
- 被引次数: 0