高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微小频偏的新的四阶累积量DOA子空间估计法

刘学斌 季飞 韦岗

刘学斌, 季飞, 韦岗. 基于微小频偏的新的四阶累积量DOA子空间估计法[J]. 电子与信息学报, 2005, 27(5): 745-748.
引用本文: 刘学斌, 季飞, 韦岗. 基于微小频偏的新的四阶累积量DOA子空间估计法[J]. 电子与信息学报, 2005, 27(5): 745-748.
Liu Xue-bin, Ji Fei, Wei Gang . A New Subspace Method of DOA Estimation with Four-Order Cumulants Based on Small Frequency Offset[J]. Journal of Electronics & Information Technology, 2005, 27(5): 745-748.
Citation: Liu Xue-bin, Ji Fei, Wei Gang . A New Subspace Method of DOA Estimation with Four-Order Cumulants Based on Small Frequency Offset[J]. Journal of Electronics & Information Technology, 2005, 27(5): 745-748.

基于微小频偏的新的四阶累积量DOA子空间估计法

A New Subspace Method of DOA Estimation with Four-Order Cumulants Based on Small Frequency Offset

  • 摘要: 在采用基于四阶累积量的子空间法进行DOA估计时,一般要求基带信号独立,以保证信号四阶不相干, 否则估计性能将下降。该文提出一种新的四阶累积量DOA估计法,解除了对基带信号独立性的要求。该方法对每一个基带信号分配一个基带载波,基带载波相对射频载波是一个微小偏差。该文推导了在基带信号独立和相关两种情况下,信号四阶相干性与基带载波频率的关系:设计出了在基带信号相关情况下,保证信号四阶不相干的微小频偏集。仿真结果验证了设计的正确性和有效性。
  • 张贤达.时间序列分析--高阶统计量方法[M].北京:清华大学出版社,1996,第11章.[2]Dogan M C, Mendel J M. Applications of cumulants to array processing-Part Ⅰ: Aperture extension and array calibration[J].IEEE Trans. on SP.1995, 43(5):1200-[3]Porat B, Friedlander B. Direction finding algorithms based on high-order statistics [J].IEEE Trans. on SP.1991, 39(9):2016-[4]魏平,肖先赐.基于四阶累积量的阵列扩展[J].电子科学学科,1997,19(6):745-750.[5]魏平,肖先赐.谐波过程的高阶广义各态历经性的分析与应用[J].电子与信息学报.2003,25(3):333-339浏览[6]Cui Jian, Falconer D D, Sheikh A U H, Blind adaptation of antenna arrays using a simple algorithm based on small frequency offsets [J]. IEEE Trans. on Communications, 1998, 46(1):62 - 70.[7]Shamsunder S, Giannakis G B. Signal selective localization of nonGaussian cyclostationary sources[J].IEEE Trans. on SP.1994,42(10):2860-[8]张贤达,保铮.非平稳信号分析和处理[M].北京:国防工业出版社,1998,第10章.
  • 加载中
计量
  • 文章访问数:  2039
  • HTML全文浏览量:  84
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-01-06
  • 修回日期:  2004-09-15
  • 刊出日期:  2005-05-19

目录

    /

    返回文章
    返回