关于Goppa码的维数问题
ON THE DIMENSIONS OF GOPPA CODES
-
摘要: 冯贵良(1983)给出了Coppa码维数的新下限。本文首先给出了在一定条件下求这一下限的统一公式。然后给出了Goppa码维数上限以及求这一上限的具体方法。通过上、下限同时估计,能够求出特殊类型的Goppa码的维数。Abstract: A new lower bound on the dimensions of Goppa codes bas been given by Feng Guiliang (1983). In this paper, at first, a formula for computing the lower bound in some cases is offered, and a upper bound on the dimensions of Goppa codes and a method of finding the upper bound are given. In some special cases, the dimensions of Goppa codes can be obtained by using the upper bound and the lower bound.
-
V. D. Goppa, Probl. Peredach. Inform., 6(1970)3, 24-30.[2]E.R.BerIekamp, IEEE Trans. on IT, IT-19(1973)9, 590-592.[3]F.J.Macwillians, N.J.A. Sloane, Theory of Error-Correcting Codes, New York, North-Holland, (1977).[4]冯贵良,电子学报,1983年,第2期,第66-72页.[5]K.K.Tzeng,E.Iimmermann, IEEE.Trans. on IT, IT-21(1975)11, 712-716.[6]岳殿武,循环陪集结构及其应用,系统科学与数学,待发表.
计量
- 文章访问数: 2285
- HTML全文浏览量: 144
- PDF下载量: 562
- 被引次数: 0