色散媒质中ADI-FDTD的PML
PML Implementation for ADI-FDTD in Dispersive Media
-
摘要: 基于交替方向隐式(ADI)技术的时域有限差分法(FDTD)是一种非条件稳定的计算方法,该方法的时间步长不受Courant稳定条件限制,而是由数值色散误差决定。与传统的FDTD相比, ADI-FDTD增大了时间步长, 从而缩短了总的计算时间。该文采用递归卷积(RC)方法导出了二维情况下色散媒质中ADI-FDTD的完全匹配层(PML)公式。应用推导公式计算了色散土壤中目标的散射,并与色散媒质中FDTD结果对比,在大量减少计算时间的情况下,两者结果符合较好。Abstract: Alternating Direction Implicit-Finite Difference Time Domain(ADI-FDTD) is unconditionally stable and the maximum time step size is not limited by the Courant stability condition, but rather by numerical error. Compared with the conventional FDTD method, the time step size of ADI-FDTD can be enlarged arbitrarily. In this paper 2D PML implementation is proposed for ADI-FDTD in dispersive media using recursive convolution method. ADI-FDTD formulations for dispersive media can be derived from the simplified Perfectly Matched Layer (PML). Numerical results of ADI-FDTD with PML for dispersive media are compared with FDTD. Good agreement is observed.
-
Yee K S. Numerical solution of initial boundary problems involving Maxwells equations in isotropic media. IEEE Trans on AP, 1966, 14(4): 302-307.[2]Takefumi Namiki. A new FDTD algorithm based on alternating direction implicit method[J].IEEE Trans. on MTT.1999, 47(10):2003-2007[3]Takefumi Namiki. 3D ADI-FDTD methodunconditionally stable time domain algorithm for solving full vector Maxwells equations[J].IEEE Trans. on MTT.2000, 48(10):1743-1748[4]Zheng Fenghua, Chen Zhizhang, Zhang Jiazong. Toward the development of three-dimensional unconditionally stable finite difference time domain method[J].IEEE Trans. on MTT.2000, 48(9):1550-1558[5]Wang Shumin, Teixeira F L. An efficient PML implementation for the ADI-FDTD method. IEEE MGWL, 2003, 13(2): 72-74.[6]Gedney S D, et al. Perfectly matched layer media with CFS for an[7]unconditionally stable ADI-FDTD method. IEEE Trans on AP,[8]01, 49(11): 1554-1559.[9]Liu Gang, Gedney S D. Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method. IEEE MGWL, 2000, 10(7): 261-263.[10]Luebbers R. A frequency-dependent finite difference time domain formulation for dispersive materials. IEEE Trans. on EMC, 1990, 32(3): 222-227.[11]Uno T. Perfectly matched layer absorbing boundary condition for dispersive medium. IEEE MGWL, 1997, 7(9): 264-266.
计量
- 文章访问数: 2751
- HTML全文浏览量: 79
- PDF下载量: 835
- 被引次数: 0