高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种完全重构双正交小波基的构造方法

朱铁稳 陈少强 李琦 苗前军

朱铁稳, 陈少强, 李琦, 苗前军. 一种完全重构双正交小波基的构造方法[J]. 电子与信息学报, 2005, 27(6): 900-904.
引用本文: 朱铁稳, 陈少强, 李琦, 苗前军. 一种完全重构双正交小波基的构造方法[J]. 电子与信息学报, 2005, 27(6): 900-904.
Zhu Tie-wen, Chen Shao-qiang, Li Qi, Miao Qian-jun . A Construction Method of Biorthogonal Bases of Perfect Reconstruction Wavelet[J]. Journal of Electronics & Information Technology, 2005, 27(6): 900-904.
Citation: Zhu Tie-wen, Chen Shao-qiang, Li Qi, Miao Qian-jun . A Construction Method of Biorthogonal Bases of Perfect Reconstruction Wavelet[J]. Journal of Electronics & Information Technology, 2005, 27(6): 900-904.

一种完全重构双正交小波基的构造方法

A Construction Method of Biorthogonal Bases of Perfect Reconstruction Wavelet

  • 摘要: 在有关小波的各种应用中,合适小波基的选取是一个极为重要和棘手的问题。该文利用传递函数(或滤波器)的方法建立了一种完全重构双正交小波基的构造通用方法,利用该文提供的结论,只需要适当选择系数aij(), 就可以构造出满足特定需要性质的重构小波基。因此,该文的结论对于促进小波的应用具有十分重要的理论意义和实际意义。
  • Zhang Z, Toda H, Kawabata H. A new complex wavelet: ri-spline wavelet and its application to signal processing. Proc. of the 41 st SICE Annual Conference, Osaka, Japan, 5-7 Aug. 2002. Vol.4:2496 - 2501.[2]Rioul O, Vetterli M. Wavelets and signal processing. IEEE Signal Processing Magazine, 1991, 8(4): 14 - 18.[3]Thakor N V, Sun Y, Rix H, Caminal P. Multiwave: A wavelet-based ECG data compression. IEICE Trans. Info. Syst.,1993, E76-D(12): 1462 - 1469.[4]Lewis A, Knowles G. Image compression using 2-D wavelet transform[J].IEEE Trans. on Image Processing.1992, 1(2):244-[5]Vitterli M, Herley C. Wavelets and filter banks: theory and design[J].IEEE Trans. on Signal Processing.1992, 40(9):2207-[6]Lang M, Guo H, Odegard J E, Burrus C S, Wells R O. Noise reduction using an undecimated discrete wavelet transform[J].IEEE Signal Processing Letters.1996, 3(1 ):10-[7]Dragotti P L, Vetterli M. Shift-invariant gibbs free denoising algorithm based on wavelet tranform footprints. Proc. of SPIE,2000, Wavelet Application in Signal and Image Processing, San Diego, USA, Aug. 2000.[8]Boccignone G, Chianese A, Picariello A. Using Renyis information and wavelets for target detection: An application to mammograms[J].Pattern Analysis Applications.2000, 3(4):303-[9]Sweldens W. The lifting scheme: A construction of second generation wavelets. Technical Report 1995:6, Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1995.[10]Sweldens W. The iifting scheme: A custom-design construction of biorthogonal wavelets[J].Journal of Appl. and Comput. Harmonic Analysis.1996, 3(2):186-[11]耿则勋.小波变换理论及在遥感影像压缩中的应用.北京:测绘出版社,2002:15-20.[12]Mallat S G. A theory for multiresolution signal decomposotion:the wavelet representation. IEEE. Trans. on PAMI, 1989, 11(7):674 - 693.[13]李素芝,万建伟.时域离散信号处理.长沙:国防科技大学出版社,1994,第3章.[14]Cohen A, Daubechies I, Feauveau J. Bi-orthogonal bases of compactly supported wavelets[J].Comm. On Pure Appl. Math.1992,45(5):485-[15]刘春生,张晓春.实用小波分析.北京:中国矿业大学出版社,2002:71-76.
  • 加载中
计量
  • 文章访问数:  2294
  • HTML全文浏览量:  101
  • PDF下载量:  785
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-01-06
  • 修回日期:  2004-05-25
  • 刊出日期:  2005-06-19

目录

    /

    返回文章
    返回