Vechinski D, Rao S M. A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. on AP, 1992, AP-40(6): 661-665.[2]Davies P J, Duncan D B. Averaging techniques for time-marching schemes for retarded potential integral equations[J].Appl. Numer. Math.1997, 23:291-310[3]Weile D S, Pisharody G , Chen N W, Shanker B, Michielssen E. A novel schemes for the solution of the time domain integral equations of electromagnetics[J].IEEE Trans. on AP.2004, 52(1):283-295[4]Manara G, Monorchio A, Reggiannini R. A space-time discretization criterion for a stable time-marching solution of the electric field integral equation. IEEE Trans. on AP, 1997, AP-45(3): 527-532.[5]Hu J L, Chan C H. A new temporal basis function for the time-domain integral equation method[J].IEEE Wireless Components Letters.2001, 11(11):465-466[6]Bluck M J, Walker S P. Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems. IEEE Trans. on AP, 1997, 45(5): 894-901.[7]Lu M, Michielsson E. Closed form evaluation of time domain fields due to Rao-Wilton-Glisson sources for use in matching-on- in-time based EFIE solvers. IEEE APS Int. Symp. Dig., San Antonio, 2002: 74-77.[8]Shanker B, Ergin A A, Aygun K, Michielsson E. Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral quation. IEEE Trans. on AP, 2000, AP-48(7): 1064-1074.[9]Rao S M, Wilton D R. Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. on AP, 1991, AP-39(1): 56-61.[10]Graglia R D. On the numerical integration of the linear shape functions times the 3-D Greens function or its gradient on a plane triangle. IEEE Trans. on AP, 1993, AP-41(10): 1448-1455.[11]Duffy M G. Quadrature over a pyramid or cube of integrands with a singularity at a vertex[J].SIAM J. Numer. Anal.1982, 19(6):1260-1262[12]Vechinski D A, Rao S M, Sarkar T K. Transient scattering from three-dimensional arbitrary shaped dielectric bodies. J. Opt.Soc[13]Amer. A, Opt. Image Sci., 1994, 11(4): 1458-1470.
|