高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多子波的CDMA系统

潘进 焦李成 方洋旺

潘进, 焦李成, 方洋旺. 基于多子波的CDMA系统[J]. 电子与信息学报, 2002, 24(9): 1167-1171.
引用本文: 潘进, 焦李成, 方洋旺. 基于多子波的CDMA系统[J]. 电子与信息学报, 2002, 24(9): 1167-1171.
Pan Jin, Jiao Licheng, Fang Yangwang. CDMA system based on multiWavelet[J]. Journal of Electronics & Information Technology, 2002, 24(9): 1167-1171.
Citation: Pan Jin, Jiao Licheng, Fang Yangwang. CDMA system based on multiWavelet[J]. Journal of Electronics & Information Technology, 2002, 24(9): 1167-1171.

基于多子波的CDMA系统

CDMA system based on multiWavelet

  • 摘要: 将多子波的分析滤波器、预处理以及平衡化等方面的最新研究成果应用于通信领域,提出了多子波码分多址(MW-CDMA)通信系统的理论框架。在MW-CDMA中,系统首先将接收信号投影到相互正交的子波空间上,然后在各子波空间中进行多用户解调。理论分析系和仿真结果表明,这种系统可以很好地抑制多址干扰和环境噪声。同时也为减少解码的计算量提供了新的思路。
  • S. Verd, Multiuser Detection, Cambridge, U K, Cambridge Univ. Press, 1998, Chapter4~Chapter7.[2]G. Woodward, B. S. Vuctic, Adaptive detection for DS-CDMA, Proc. IEEE, 1998, 86(7), 1413-1433.[3]X. Wang, H. V. Poor. Blind joint equalization and multiuser detection for DS-CDMA in unknowncorrelated noise, IEEE Trans. on Circuits and Systems-II: Analog and Digital Processing, 1999,CAS-II-46(7), 886-895.[4]A. Duel-Hallen, A family of multiuser decision-feedback detectors for synchronous code-divisionmultiple access channel, IEEE Trans. on Commun., 1995, COM-43(2/3/4), 421-434.[5]A.N. Akansu, P. Duhamel, X. Lin, Marc de Courville, Orthogonal transmultiplexers in communication: A review, IEEE Trans. on Signal Processing, 1998, SP-46(4), 979-995.[6]Q. Jiang, Orthogonal multiwavelets with optimum time-frequency resolution, IEEE Trans. onSignal Processing, 1998, SP-46(4), 830-844.[7]J. Pan, L. Jiao, L. Chen, Construction of orthogonal multiwavelets with short sequence via geneticalgorithm, Progress in Natural Science, 2000, 10(4), 294-301.[8]X.G. Xia, A new prefilter design for discrete multiwavelet transforms, IEEE Trans. on SignalProcessing, 1998, SP-46(6), 1558-1570.[9]X. Yang, L. Jiao, J. Pan, Prefilter for multiwavelet neural network, Progress in Natural Science,2000, 10(10), 780-786.[10]J. Lebrun, M. Vetterli, Balanced multiwavelets theory and design, IEEE Trans. on Signal Processing, 1998, SP-46(4), 1119-1125.[11]J.S. Geronimo, D. P. Hardin, P. R. Massopust. Fractal functions and wavelet expansions basedon several scaling functions, Journal of Approximation Theory, 1994, 78(3), 373-401.
  • 加载中
计量
  • 文章访问数:  1849
  • HTML全文浏览量:  79
  • PDF下载量:  587
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-02-11
  • 修回日期:  2001-08-17
  • 刊出日期:  2002-09-19

目录

    /

    返回文章
    返回