高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混沌、多重分形理论的雷达信号分析和目标识别

鲜明 庄钊文 肖顺平 郭桂蓉

鲜明, 庄钊文, 肖顺平, 郭桂蓉. 基于混沌、多重分形理论的雷达信号分析和目标识别[J]. 电子与信息学报, 1998, 20(4): 433-439.
引用本文: 鲜明, 庄钊文, 肖顺平, 郭桂蓉. 基于混沌、多重分形理论的雷达信号分析和目标识别[J]. 电子与信息学报, 1998, 20(4): 433-439.
Xian Ming, Zhuang Zhaowen, Xiao Shunping, Guo Guirong. THE CHAOS AND MULTIFRACTAL THEORY BASED RADAR SIGNAL PROCESSING AND RADAR TARGET RECOGNITION[J]. Journal of Electronics & Information Technology, 1998, 20(4): 433-439.
Citation: Xian Ming, Zhuang Zhaowen, Xiao Shunping, Guo Guirong. THE CHAOS AND MULTIFRACTAL THEORY BASED RADAR SIGNAL PROCESSING AND RADAR TARGET RECOGNITION[J]. Journal of Electronics & Information Technology, 1998, 20(4): 433-439.

基于混沌、多重分形理论的雷达信号分析和目标识别

THE CHAOS AND MULTIFRACTAL THEORY BASED RADAR SIGNAL PROCESSING AND RADAR TARGET RECOGNITION

  • 摘要: 本文旨在将混沌、多重分形的理论和方法引入雷达信号处理,分析雷达目标的混沌、分形特性,以有效进行雷达目标识别。文中统计了飞机目标回波信号的Lyapunov指数分布情况,并计算了其多重分形维数,然后在此基础上,利用ART2神经网络进行了飞机目标识别的研究,获得较高识别率。本文的研究表明,混沌、多重分形理论结合人工神经网络在目标特性和目标识别的研究中有着良好的应用前景。
  • Kennedy M P. Three steps to chaos, IEEE Trans.on CAS, 1993, CAS-40(10): 640-674. (Special Issue on Chaos in Nonlinear Electronic Circuits).[2]Chua L O, et al. Linear and Nonlinear Circuits. New York: McGraw-Hill, 1985, 1-79.[3]Mehaute A Le, et al. Overview of electrical process in fractal geometry: From electrodynamic relaxation to superconductivity[J].Proc. IEEE.1993, 81(10):1500-1510[4]Chua L O, Brown K, Hamilton N. Fractal in the twist and flip circuit, Proc[J].IEEE.1993, 81(10):1466-1491[5]李后强,汪富泉.分形理论及其在分子科学中的应用.北京:科学出版社,1993,第2章,第3章.[6]Lin T, Chua L U. On choas of digital filter in the real world. IEEE Trans. on CAS, 1991, CAS-38(5): 557-558.[7]Beaumont J M. Image data compression using fractal techniques. BT Techology Journal 1991, 27(9): 13-27.[8]Wornell G W, Oppenheim A V. Estimation of fractal of signal from noisy measurement using wavelets. IEEE Trans. on SP, 1992, SP-40(3): 611-623.[9]Lo T, et al. Fractal character of sea-scattered signal and detection of sea-surface targets. IEE Proc.-F, 1993, 40(4): 1-29.[10]Buzug Th, Pfister G. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors, Phys[J].Rev. A.1992, 45(10):7073-7084[11]Wolf A, Swift J B, Swinney H L, Vastano J A. Determining Lyapunov exponents from a time series.[J]. Physica D.1985,16:285-[12]黄立基,丁菊仁.多标度分形理论及进展.物理学进展,1991, 11(3): 269-330.
  • 加载中
计量
  • 文章访问数:  2168
  • HTML全文浏览量:  164
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  1997-05-19
  • 修回日期:  1997-10-13
  • 刊出日期:  1998-07-19

目录

    /

    返回文章
    返回