基于AutoCAD自动建模技术的任意形状导体电容MoM计算
The MoM Solution for the Capacitance of an Arbitrary Shaped Conducting Body Based on AutoCAD Modeling
-
摘要: 该文首先研究了任意形状导体的AutoCAD自动建模,得出了基于三角形面片的任意形状导体表面的模型.接着着重研究了利用矩量法求解任意形状导体的理论基础,推导出了任意三角形自作用单元的解析公式以及互作用单元的数值解。最后,给出了一些二维,三维的任意导体的数值结果,并且给出了这些数值结果的Richardson外推值,计算结果与文献以及精确解都吻合的比较好,从而说明了该方法的有效性和准确性。Abstract: The auto-modeling of an arbitrary shaped conducting body is studied by the software AutoCAD firstly, and the surface model of the conducting body is achieved on base of many basic triangle meshes. Then the basic theory of the solution for the capacitance of an arbitrary shaped conducting body is presented by method of moment, and the closed-form of diagonal matrix elements and the numerical result of off-diagonal matrix elements are deduced. Finally, some examples of two-dimensional and three-dimensional bodies are given, at the same time the Richardsons extrapolations of these numerical results are calculated. The results agree well with the corresponding close-form and the reference value in literature. Thus the methods accuracy and high efficiency are illuminated.
-
Cheng D K, Liang C H. Thinning technique for moment method solutions[J].Proc. IEEE.1983,71(2):265-266[2]Kuo J T, Su Ke-Ying. Analytical evaluation of the MoM matrix elements for the capacitance of a charged plate. IEEE Trans. on Microwave Theory Tech., 2002, MTT-50(5): 1435-1436.[3]Bancroft R. A note on the moment method solution for the capacitance of a conducting flat plate.IEEE Trans. on Antennas Propagat., 1997, AP-45(11): 1704-1705.[4]Harrington R F. Field Computation by Moment Methods. New York: Macmillan, 1968: 29-34.[5]金建铭(美),王建国译,葛德彪校.电磁场有限元方法.西安:西安电子科技大学出版社,1998.2:92-93.[6]吕涛,石济民,林振宝.分裂外推与组合技巧.北京:科学出版社,1998:1-8.[7]蔡耀志.数值逼近.杭州:浙江大学出版社,1991:94-96.[8]虞福春,郑春开.电动力学.北京:北京大学出版社,1992:31-32.[9]Nabors K, Kim S, White J. Fast capacitance extraction of general three-dimensional structures.IEEE Trans. on Microwave Theory Tech., 1992, MTT-40(7): 1496-1506.[10]Ruehli A E, Brennan P A. Efficient capacitance calculations for three-dimensional multi-conductor systems. IEEE Trans. on Microwave Theory Tech., 1973, MTT-21(2): 76-82.[11]Mascagni M. First and last passage random walk algorithms. Mathematics and Computational Sciences Divisions Seminar Series in Gaithersburg, MD, Dec. 2001: 1-36.
计量
- 文章访问数: 2622
- HTML全文浏览量: 91
- PDF下载量: 504
- 被引次数: 0