基于图像矩阵的广义主分量分析
A Generalized Principal Component Analysis Based on Image Matrix
-
摘要: 传统的主分量分析在处理图像识别问题时是基于向量的,且没有充分利用训练样本的类别信息。该文提出了一种直接基于图像矩阵的广义主分量分析方法,该方法能够提取包含在类平均图像中的鉴别信息,与传统的主分量分析相比,具有更强的鉴别力。在ORL标准人脸库上的试验结果表明,所提出的方法不仅识别性能优于传统的主分量分析和Fisher线性鉴别分析,而且极大地提高了特征抽取的速度。Abstract: The classical Principal Component Analysis (PCA) for image feature extraction is usually based on vectors, which makes it very time-consuming, and the class information in the training sample has not been utilized fully also. To overcome these two drawbacks of PCA, this paper proposes a novel and efficient PCA method based on original image matri-ces directly. It can extract the discriminant information included in the class mean images. Hence, the proposed method has better discriminant performance than classical PCA. Ex-perimental results on ORL face database show the proposed method is more powerful and efficient than the classical PCA and Fisher linear discriminant analysis.
-
Pentland A. Looking at people: sensing for ubiquitous and wearable computing[J].IEEE Trans.Pattern Anal. Machine Intell.2000, 22(1):107-119[2]Grudin M A. On internal representations in face recognition systems[J].Pattern Recognition.2000, 33(7):1161-1177[3]Turk M, Pentland A. Face recognition using eigenfaces[C]. Proc. IEEE Conf. On Computer Vision and Pattern Recognition, Hawaii, 1991: 586-591.[4]Liu K, Cheng Y.-Q., Yang J.-Y., et al.. Algebraic feature extraction for image recognition based on an optimal discriminant criterion. Pattern Recognition, 1993, 26(6): 903-911.[5]Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vsFisherfaces: Recognition using class specific linear projection[J].. IEEE Trans. on Pattern Anal. Machine Intell.1997, 19(7):711-720[6]Pentland A, Moghaddam B, Starner T. View-based and mododular eigenspaces for face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1994: 84-91.[7]程云鹏.矩阵论.西安:西北工业大学出版社,1999:294-302.
计量
- 文章访问数: 2537
- HTML全文浏览量: 102
- PDF下载量: 795
- 被引次数: 0