利用双尺度相似变换构造高逼近阶的双正交多低通滤波器
Using TST Constructing Biorthogonal Low Pass Multi-filters with Higher Approximation Order
-
摘要: 该文给出了利用分形插值函数构造多尺度函数的推导方法,对多低通滤波器H0(z)通过计算知det H0(z)和det H0(-z)没有公共根,利用双正交多低通滤波器的精确重构条件,得到了H0(z)的对偶滤波器F0(z).为了使H0(z)的对偶具有较高逼近阶,对H0(z)作双尺度相似变换,得到了H0new(z)和它的对偶F0new(z),对只F0new(z)作相应的反变换,就得到了H0(z)的具有高逼近阶的对偶滤波器.Abstract: This paper presents a detailed method on constructing multi-scaling functions with fractal interpolation functions, then calculates that det H0(z) and det H0(-z) have no common roots, and obtains F0(z) the dual low pass multi-filter of H0(Z) with the perfect reconstruction condition of biorthogonal low pass multi-filters. In order to construct the dual low pass multi-filter of H0(z) with higher approximation order, the two-scale similarity transform is taken for H0(z), then and its dual H0new t(z) is obtained. After applying corre-sponding inverse transform to F0new(z), the dual low pass multi-filter of H0(z) with higher approximation order is achieved.
-
Gerorimo J S, Hardin D P, Massopust P R. Fractal functions and wavelet expansions based on several scaling functions[J].J. Approxn. Theory.1994, 78:373-401[2]Plonka G, Strela V. Construction of multi-scaling functions with approximation and symmetry[J].SIAM J. of Math. Anal.1998, 29(2):481-510[3]Strela V. A note on construction of biorthogonal multiscaling functions, Contemporary Mathematics, Wavelets Multiwavelets and Their Applications. A. Aldoubi, E. B. Lin, eds. AMS Philadelphia, 1998: 149-157.[4]朱春喜,徐长发,蔡超,皮明红.对称反对称多重尺度函数的构造[J].高等学校计算数学学报,2000,22(4):371-378.[5]张彬,王卫卫,宋国乡.利用分形插值函数构造多小波尺度函数的一个新方法.工程数学学报,2002,19(1):55-60.
计量
- 文章访问数: 2337
- HTML全文浏览量: 102
- PDF下载量: 449
- 被引次数: 0