高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电话语音识别中基于统计模型的动态通道

韩兆兵 张化云 张树武 徐波

韩兆兵, 张化云, 张树武, 徐波. 电话语音识别中基于统计模型的动态通道[J]. 电子与信息学报, 2004, 26(11): 1714-1720.
引用本文: 韩兆兵, 张化云, 张树武, 徐波. 电话语音识别中基于统计模型的动态通道[J]. 电子与信息学报, 2004, 26(11): 1714-1720.
Han Zhao-bing, Zhang Hua-yun, Zhang Shu-wu, Xu Bo. Dynamic Channel Compensation Based on Statistical Model for Mandarin Speech Recognition over Telephone[J]. Journal of Electronics & Information Technology, 2004, 26(11): 1714-1720.
Citation: Han Zhao-bing, Zhang Hua-yun, Zhang Shu-wu, Xu Bo. Dynamic Channel Compensation Based on Statistical Model for Mandarin Speech Recognition over Telephone[J]. Journal of Electronics & Information Technology, 2004, 26(11): 1714-1720.

电话语音识别中基于统计模型的动态通道

Dynamic Channel Compensation Based on Statistical Model for Mandarin Speech Recognition over Telephone

  • 摘要: 与桌面环境相比,电话网络环境下的语音识别率仍然还比较低,为了推动电话语音识别在实际中的应用,提高其识别率成了当务之急.先前的研究表明,电话语音识别率明显下降通常是因为测试和训练环境的电话通道不同引起数据失配造成的,因此该文提出基于统计模型的动态通道补偿算法(SMDC)减少它们之间的差异,采用贝叶斯估计算法动态地跟踪电话通道的时变特性.实验结果表明,大词汇量连续语音识别的字误识率(CER)相对降低约27%,孤立词的词误识率(WER)相对降低约30%.同时,算法的结构时延和计算复杂度也比较小.平均时延约200ms.可以很好地嵌入到实际电话语音识别应用中.
  • Moreno P J, Siegler M A, Jain U, Stern R. M. Continuous speech recognition of large vocabulary telephone quality speech. Proc. of the Eighth Spoken Language Systems Technology Workshop,Austin, Texas, 1995.[2]Besacier L, Grassi S, Dufaux A, Ansorge M, Pellandini F. GSM speech coding and speaker recognition. Proc. of ICASSP 2000, Istanbul, Turkey, June 2000: 1085-1088.[3]Huerta J M. Speech recognition in mobile environments. [Ph.D. Thesis]: School of Computer Science, Carnegie Mellon University, Apr. 2000.[4]Hermansky H, Morgan N. RASTA processing of speech[J].IEEE Trans. on Speech and Audio Processing.1994, 2(4):578-589[5]Rahim M G, Juang Biing-Hwang. Signal bias removal by maximum likelihood estimation for robust telephone speech recognition[J].IEEE Trans. on Speech and Audio Processing.1996, 4(1):19-30[6]Sankar Ananth, Lee Chin-Hui. A maximum-likelihood approach to stochastic matching for robust speech recognition[J].IEEE Trans. on Speech and Audio Processing.1996, 4(3):190-202[7]Moreno P J. Speech recognition in noisy environments. [Ph.D. Thesis]: School of Computer Science, Carnegie Mellon University, April 22, 1996.[8]Westphal M. The use of cepstral means in conversational speech recognition. Proc. of Eurospeech 97, Greece, 1997: 1143-1146.[9]Chien Jen-Tzung.[J].Wang Hsiao-Chuan, Lee Lee-Min. Estimation of channel bias for telephone speech recognition. In Proc. ICSLP96, Philadelphia USA.1996,:-Veth J D.[J].Boves L. Comparison of channel normalization techniques for automatic speech recognition over the phone. In Proc. ICSLP96, Philadelphia USA.1996,:-
  • 加载中
计量
  • 文章访问数:  2313
  • HTML全文浏览量:  113
  • PDF下载量:  619
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-06-12
  • 修回日期:  2004-03-23
  • 刊出日期:  2004-11-19

目录

    /

    返回文章
    返回