基于目标语义特征的图像检索系统
Image Retricval System Based on semantic features of objects
-
摘要: 为克服当前基于内容的图像检索技术中低级特征无法准确全面地描述高级语义的问题,该文设计和实现了一个基于目标高级语义特征的检索系统。该系统利用了一个多级图像描述模型将语义特征结合到图像检索技术中。该图像描述模型通过在不同层次上对图像内容进行分析和描述,实现了从低级特征到高级语义的过渡。在此模型的基础上还研究了相应的检索机制和反馈技术。该系统的检索机制定位于图像中目标的语义内容,与传统的图像检索系统相比更接近人对图像内容的理解,从而使检索过程更简便,检索效率也得到很大提高。基于目标描述的自适应相关反馈可针对不同用户的不同需求给出相应的检索方案,从而使检索结果得到优化。Abstract: Most existing content-based image retrieval systems using low-level features that could not describe high-level semantics thoroughly and accurately. In this paper, a novel system for content-based image retrieval is designed and created, which combines image semantics based on a multi-level model for image description. In this image description model, image contents could be analyzed and represented through different levels and the transition from low-level features to high-level semantics is thus achieved. Corresponding querying mechanism and feedback are also proposed based on this image model. Aiming at object semantics in image, this querying mechanism is much closer to human beings understanding of image contents so that it provides a convenient and effective querying procedure. The feedback used in the system is a self-adaptive relevance feedback based on object descriptions, it permits to propose different querying schemes according to the different demands raised by various users, and thus optimal results could be refined.
-
Y. Rui, T. S. Huang, S. Mehrotra, Relevance feedback techniques in interactive content-based image retrieval, 1998, SPIE 3312: 25-34.[2]D.Z. Hong, J. K. Wu, S. S. Singh, Refining image retrieval based on context-driven method,1999, SPIE 3656: 581-593.[3]A. Jaimes, S. F. Chang, Model-based classification of visual information for content-based retrieval, SPIE 3656: 402-414.[4]E.J. Pauwels, G. Frederix, Finding salient regions in images: Nonparametric clustering for image segmentation and grouping, Computer Vision and Image Understanding, 1999, 75(1): 73-85.[5]Y.Y. Gao, Y. J. Zhang, Object classification using mixed color feature, Proc. ICASSP, Istanbul,2000, 4: 2003-2006.[6]S.G. Mallat, Multifrequency channel decompositions of images and wavelet models, IEEE Trans.on ASSP, 1989, ASSP-37(12): 2091 2110.[7]Y.Y. Gao.[J].Y. J. Zhang, N. S. Merzlyakov, Semantic-based image description model and its implementation in image retrieval, Proc. of ICIG2000, Tianjin.2000,:-[8]高永英,章毓晋,基于多级描述模型的渐近式图像内容理解,电子学报,2001,29(10):1376-1380.[9]G. Ciocca.[J].R. Schettini, Using a relevance feedback mechanism to improve content-based image retrieval, Proc. of 3rd VISUAL99, Amsterdam.1999,:-[10]梅镇彤,学习和记忆的神经生物学,上海,上海科学技术出版社,1997,51-53.
计量
- 文章访问数: 2436
- HTML全文浏览量: 134
- PDF下载量: 911
- 被引次数: 0