I. Daubechies, Orthogonal bases of compactly supported wavelets, Commu. Pure Appl.Math.1988, 41(7), 909-996.[2]I. Daubechies, W. Sweldens, Factoring wavelet transforms into lifting steps, J. Fourier Anal.Appl., 1998, 4(3), 247-269.[3]W. Sweldens, The lifting scheme: A construction of second generation wavelets, SIAM J.Math.Anal., 1997, 29(2), 511-546.[4]W. Sweldens, The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl.Comput. Harmon. Anal., 1996, 3(2), 186-260.[5]L. Lounsbery, T. D. DeRose, J. Warren, Multiresolution surfaces of arbitrary topological type,ACM Trans. on Graphics, 1997, 16(1), 34-73.[6]W. Lawton, Tight frames of compactly supported wavelets, J. Math. Phys., 1990, 31(8), 1898-1901.[7]W. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases, J.Math. Phys., 1991, 32(1), 57-61.[8]A. Cohen, I. Daubechies, Biorthogonal bases of compactly supported wavelets, Commu. Pure Appl. Math. 1992, 45, 485-560.[9]T.Q. Nguyen, P. P. Vaidyanathan, Two-channel perfect-reconstruction FIR QMF structrucs which yield linear-phase analysis and synthesis filters, IEEE Trans. on ASSP, 1989, 37(5), 676-690.
|