Advanced Search
Volume 24 Issue 4
Apr.  2002
Turn off MathJax
Article Contents
Zhang Jiashu, Xiao Xianci. Sigmoid-based Volterra adaptive active noise cancellation filters[J]. Journal of Electronics & Information Technology, 2002, 24(4): 461-466.
Citation: Zhang Jiashu, Xiao Xianci. Sigmoid-based Volterra adaptive active noise cancellation filters[J]. Journal of Electronics & Information Technology, 2002, 24(4): 461-466.

Sigmoid-based Volterra adaptive active noise cancellation filters

  • Received Date: 2000-05-28
  • Rev Recd Date: 2001-07-05
  • Publish Date: 2002-04-19
  • A novel class of nonlinear adaptive active noise cancellation filter-sigmoid-based Volterra adaptive active noise cancellation filter is introduced. The normalized data and instantaneous error LMS algorithm is modified to update the coefficients of this sigmoid-based Volterra filter. Because the sigmoid-based Volterra adaptive filter, equivalent to second-order Volterra filter, is of the reduced coefficients and modularity, it is applied for adaptive active noise cancellation. Experimental results of adaptive active noise cancellation show that the proposed sigmoid-based Volterra adaptive active noise cancellation filter not only has good anti-noise performance, but also can be easily implemented.
  • loading
  • S. Haykin, Adaptive filter theory, 3rd ed., Englewood cliffs, NJ, Prentice-Hall, 1996, 1-10.[2]A. Zerguine, M. Bettayeb, C. F. N. Cown, Hybrid LMS-LMF algorithm for adaptive echo cancellation, IEE Proc. -Vis. Image Signal Process., 1999, 146(4), 173-180.[3]V.J. Mathews, Adaptive polynomial filters, IEEE Signal Processing Magazine, 1991, 8(4), 10-26.[4]G.M. Raz, B. Van Veen, Baseband Volterra filters for implemening carrier based nonlinearities.IEEE Trans. on SP., 1998, SP-46(1), 103-114.[5]E. Bilgliieri, et al., Adaptive cancellation of nonlinear intersymbol interference foi vioceband data transmission, IEEE J. On SAC., 1984, 2(5), 765-777.[6]E. Roy, R. W. Stewart, T. S. Durrani, High-order system identification with an adaptive recmsive second-order polynomial filter, IEEE Signal Processing Letters, 1996, 3(10), 276-279.[7]张永平,郑南宁,李翠华,图像边缘提取的自适应Volterra滤波器设计,电子学报,1999,27(4).75-78.[8]张家树,肖先赐,混沌时间序列的Volterra自适应预测,物理学报,2000,49(3).403-408.[9]Zhang Jia-Shu, Xiao Xian-Ci, Predicting hyperchaotic time series using higher-order nobkubear FIR filters, Chin. Phys. Lett., 2001, 18(3), 337-340.[10]张家树,肖先赐,混沌时间序列的自适应高阶非线性滤波预测,物理学报,2000 49(7),1220-1226.[11]Q. P. Li, H. K. Kwan, Nonlinear adaptive IIR digital filters for linear svstem modeling, IEEE Trans. on SP., 1995, SP-43(9), 2190-2193.[12]扬家兴,周舜云,神经网络自适应噪声对消器仿真,数据采集与处理,1998,13(1),74-77.[13]Zhang Jia-Shu, Wan Ji-Hong, Xian-Ci Xiao, Adaptive nonlinear feedback control of chaoticsystem based on reduced parameter quadratic predictor, Chinese Physics, 2001, 10(2), 97-102.[14]张家树,肖先赐,用一种少参数非线性自适应滤波器自适应预测低维混沌时间序列,物理学报,2000,49(12).2333-2339.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2562) PDF downloads(672) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return