Advanced Search
Turn off MathJax
Article Contents
ZHOU Fei, ZHOU Zhiyuan, ZHANG Yutong, XIE Yuanyuan. Hybrid Scene Representation Method Integrating Neural Radiation Fields and Visual Simultaneous Localization and Mapping[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240316
Citation: ZHOU Fei, ZHOU Zhiyuan, ZHANG Yutong, XIE Yuanyuan. Hybrid Scene Representation Method Integrating Neural Radiation Fields and Visual Simultaneous Localization and Mapping[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240316

Hybrid Scene Representation Method Integrating Neural Radiation Fields and Visual Simultaneous Localization and Mapping

doi: 10.11999/JEIT240316
Funds:  The National Natural Science Foundation of China (62271096)
  • Received Date: 2024-04-22
  • Rev Recd Date: 2024-08-26
  • Available Online: 2024-08-30
  • Currently, traditional explicit scene representation Simultaneous Localization And Mapping (SLAM) systems discretize the scene and are not suitable for continuous scene reconstruction. A RGB-D SLAM system based on hybrid scene representation of Neural Radiation Fields (NeRF) is proposed in this paper. The extended explicit octree Signed Distance Functions (SDF) prior is used to roughly represent the scene, and multi-resolution hash coding is used to represent the scene with different details levels, enabling fast initialization of scene geometry and making scene geometry easier to learn. In addition, the appearance color decomposition method is used to decompose the color into diffuse reflection color and specular reflection color based on the view direction to achieve reconstruction of lighting consistency, making the reconstruction result more realistic. Through experiments on the Replica and TUM RGB-D dataset, the scene reconstruction completion rate of the Replica dataset reaches 93.65%. Compared with the Vox-Fusion positioning accuracy, it leads on average by 87.50% on the Replica dataset and by 81.99% on the TUM RGB-D dataset.
  • loading
  • [1]
    HORNUNG A, WURM K M, BENNEWITZ M, et al. OctoMap: An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots, 2013, 34(3): 189–206. doi: 10.1007/s10514-012-9321-0.
    [2]
    OLEYNIKOVA H, TAYLOR Z, FEHR M, et al. Voxblox: Incremental 3D euclidean signed distance fields for on-board MAV planning[C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017: 1366–1373. doi: 10.1109/IROS.2017.8202315.
    [3]
    NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]. 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 2011: 127–136. doi: 10.1109/ISMAR.2011.6092378.
    [4]
    FEHR M, FURRER F, DRYANOVSKI I, et al. TSDF-based change detection for consistent long-term dense reconstruction and dynamic object discovery[C]. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, Singapore, 2017: 5237–5244. doi: 10.1109/ICRA.2017.7989614.
    [5]
    DAI A, NIEßNER M, ZOLLHÖFER M, et al. BundleFusion: Real-time globally consistent 3D reconstruction using on-the-fly surface reintegration[J]. ACM Transactions on Graphics (ToG), 2017, 36(4): 76a. doi: 10.1145/3072959.3054739.
    [6]
    NIEßNER M, ZOLLHÖFER M, IZADI S, et al. Real-time 3D reconstruction at scale using voxel hashing[J]. ACM Transactions on Graphics (ToG), 2013, 32(6): 169. doi: 10.1145/2508363.2508374.
    [7]
    KÄHLER O, PRISACARIU V A, REN C Y, et al. Very high frame rate volumetric integration of depth images on mobile devices[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(11): 1241–1250. doi: 10.1109/TVCG.2015.2459891.
    [8]
    WANG Kaixuan, GAO Fei, and SHEN Shaojie. Real-time scalable dense surfel mapping[C]. 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019: 6919–6925. doi: 10.1109/ICRA.2019.8794101.
    [9]
    WHELAN T, SALAS-MORENO R F, GLOCKER B, et al. ElasticFusion: Real-time dense SLAM and light source estimation[J]. The International Journal of Robotics Research, 2016, 35(14): 1697–1716. doi: 10.1177/0278364916669237.
    [10]
    RUETZ F, HERNÁNDEZ E, PFEIFFER M, et al. OVPC mesh: 3D free-space representation for local ground vehicle navigation[C]. 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019: 8648–8654. doi: 10.1109/ICRA.2019.8793503.
    [11]
    ZHONG Xingguang, PAN Yue, BEHLEY J, et al. SHINE-mapping: Large-scale 3D mapping using sparse hierarchical implicit neural representations[C]. 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 2023: 8371–8377. doi: 10.1109/ICRA48891.2023.10160907.
    [12]
    MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99–106. doi: 10.1145/3503250.
    [13]
    SUCAR E, LIU Shikun, ORTIZ J, et al. iMAP: Implicit mapping and positioning in real-time[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 6209–6218. doi: 10.1109/ICCV48922.2021.00617.
    [14]
    ZHU Zihan, PENG Songyou, LARSSON V, et al. NICE-SLAM: Neural implicit scalable encoding for slam[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12776–12786. doi: 10.1109/CVPR52688.2022.01245.
    [15]
    YANG Xingrui, LI Hai, ZHAI Hongjia, et al. Vox-Fusion: Dense tracking and mapping with voxel-based neural implicit representation[C]. 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Singapore, 2022: 499–507. doi: 10.1109/ISMAR55827.2022.00066.
    [16]
    KONG Xin, LIU Shikun, TAHER M, et al. vMAP: Vectorised object mapping for neural field SLAM[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 952–961. doi: 10.1109/CVPR52729.2023.00098.
    [17]
    LI Kunyi, NIEMEYER M, NAVAB N, et al. DNS SLAM: Dense neural semantic-informed SLAM[J]. arXiv preprint arXiv: 2312.00204, 2023. doi: 10.48550/arXiv.2312.00204.
    [18]
    WU Xingming, LIU Zimeng, TIAN Yuxin, et al. KN-SLAM: Keypoints and neural implicit encoding SLAM[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2512712. doi: 10.1109/TIM.2024.3378264.
    [19]
    WANG Haocheng, CAO Yanlong, WEI Xiaoyao, et al. Structerf-SLAM: Neural implicit representation SLAM for structural environments[J]. Computers & Graphics, 2024, 119: 103893. doi: 10.1016/j.cag.2024.103893.
    [20]
    MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics (ToG), 2022, 41(4): 102. doi: 10.1145/3528223.3530127.
    [21]
    TANG Jiaxiang, ZHOU Hang, CHEN Xiaokang, et al. Delicate textured mesh recovery from NeRF via adaptive surface refinement[C]. The 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 17693–17703. doi: 10.1109/ICCV51070.2023.01626.
    [22]
    ZHANG Xiuming, SRINIVASAN P P, DENG Boyang, et al. NeRFactor: Neural factorization of shape and reflectance under an unknown illumination[J]. ACM Transactions on Graphics (ToG), 2021, 40(6): 237. doi: 10.1145/3478513.3480496.
    [23]
    WANG Peng, LIU Lingjie, LIU Yuan, et al. NeuS: Learning neural implicit surfaces by volume rendering for multi-view reconstruction[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 2081.
    [24]
    YARIV L, GU Jiatao, KASTEN Y, et al. Volume rendering of neural implicit surfaces[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 367.
    [25]
    AZINOVIĆ D, MARTIN-BRUALLA R, GOLDMAN D B, et al. Neural RGB-D surface reconstruction[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 6280–6291. doi: 10.1109/CVPR52688.2022.00619.
    [26]
    STRAUB J, WHELAN T, MA Lingni, et al. The replica dataset: A digital replica of indoor spaces[J]. arXiv preprint arXiv: 1906.05797, 2019. doi: 10.48550/arXiv.1906.05797.
    [27]
    STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012: 573–580. doi: 10.1109/IROS.2012.6385773.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views (139) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return