| Citation: | ZHOU Fei, ZHOU Zhiyuan, ZHANG Yutong, XIE Yuanyuan. Hybrid Scene Representation Method Integrating Neural Radiation Fields and Visual Simultaneous Localization and Mapping[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4178-4187. doi: 10.11999/JEIT240316 | 
 
	                | [1] | HORNUNG A, WURM K M, BENNEWITZ M, et al. OctoMap: An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots, 2013, 34(3): 189–206. doi:  10.1007/s10514-012-9321-0. | 
| [2] | OLEYNIKOVA H, TAYLOR Z, FEHR M,    et al. Voxblox: Incremental 3D euclidean signed distance fields for on-board MAV planning[C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017: 1366–1373. doi:  10.1109/IROS.2017.8202315. | 
| [3] | NEWCOMBE R A, IZADI S, HILLIGES O,    et al. KinectFusion: Real-time dense surface mapping and tracking[C]. 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 2011: 127–136. doi:  10.1109/ISMAR.2011.6092378. | 
| [4] | FEHR M, FURRER F, DRYANOVSKI I,    et al. TSDF-based change detection for consistent long-term dense reconstruction and dynamic object discovery[C]. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, Singapore, 2017: 5237–5244. doi:  10.1109/ICRA.2017.7989614. | 
| [5] | DAI A, NIEßNER M, ZOLLHÖFER M, et al. BundleFusion: Real-time globally consistent 3D reconstruction using on-the-fly surface reintegration[J]. ACM Transactions on Graphics (ToG), 2017, 36(4): 76a. doi:  10.1145/3072959.3054739. | 
| [6] | NIEßNER M, ZOLLHÖFER M, IZADI S, et al. Real-time 3D reconstruction at scale using voxel hashing[J]. ACM Transactions on Graphics (ToG), 2013, 32(6): 169. doi:  10.1145/2508363.2508374. | 
| [7] | KÄHLER O, PRISACARIU V A, REN C Y, et al. Very high frame rate volumetric integration of depth images on mobile devices[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(11): 1241–1250. doi:  10.1109/TVCG.2015.2459891. | 
| [8] | WANG Kaixuan, GAO Fei, and SHEN Shaojie. Real-time scalable dense surfel mapping[C]. 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019: 6919–6925. doi:  10.1109/ICRA.2019.8794101. | 
| [9] | WHELAN T, SALAS-MORENO R F, GLOCKER B, et al. ElasticFusion: Real-time dense SLAM and light source estimation[J]. The International Journal of Robotics Research, 2016, 35(14): 1697–1716. doi:  10.1177/0278364916669237. | 
| [10] | RUETZ F, HERNÁNDEZ E, PFEIFFER M,    et al. OVPC mesh: 3D free-space representation for local ground vehicle navigation[C]. 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019: 8648–8654. doi:  10.1109/ICRA.2019.8793503. | 
| [11] | ZHONG Xingguang, PAN Yue, BEHLEY J,    et al. SHINE-mapping: Large-scale 3D mapping using sparse hierarchical implicit neural representations[C]. 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 2023: 8371–8377. doi:  10.1109/ICRA48891.2023.10160907. | 
| [12] | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99–106. doi:  10.1145/3503250. | 
| [13] | SUCAR E, LIU Shikun, ORTIZ J,    et al. iMAP: Implicit mapping and positioning in real-time[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 6209–6218. doi:  10.1109/ICCV48922.2021.00617. | 
| [14] | ZHU Zihan, PENG Songyou, LARSSON V,    et al. NICE-SLAM: Neural implicit scalable encoding for slam[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12776–12786. doi:  10.1109/CVPR52688.2022.01245. | 
| [15] | YANG Xingrui, LI Hai, ZHAI Hongjia,    et al. Vox-Fusion: Dense tracking and mapping with voxel-based neural implicit representation[C]. 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Singapore, 2022: 499–507. doi:  10.1109/ISMAR55827.2022.00066. | 
| [16] | KONG Xin, LIU Shikun, TAHER M,    et al. vMAP: Vectorised object mapping for neural field SLAM[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 952–961. doi:  10.1109/CVPR52729.2023.00098. | 
| [17] | LI Kunyi, NIEMEYER M, NAVAB N,    et al. DNS SLAM: Dense neural semantic-informed SLAM[J]. arXiv preprint arXiv: 2312.00204, 2023. doi:  10.48550/arXiv.2312.00204. | 
| [18] | WU Xingming, LIU Zimeng, TIAN Yuxin, et al. KN-SLAM: Keypoints and neural implicit encoding SLAM[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2512712. doi:  10.1109/TIM.2024.3378264. | 
| [19] | WANG Haocheng, CAO Yanlong, WEI Xiaoyao, et al. Structerf-SLAM: Neural implicit representation SLAM for structural environments[J]. Computers & Graphics, 2024, 119: 103893. doi:  10.1016/j.cag.2024.103893. | 
| [20] | MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics (ToG), 2022, 41(4): 102. doi:  10.1145/3528223.3530127. | 
| [21] | TANG Jiaxiang, ZHOU Hang, CHEN Xiaokang,    et al. Delicate textured mesh recovery from NeRF via adaptive surface refinement[C]. The 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 17693–17703. doi:  10.1109/ICCV51070.2023.01626. | 
| [22] | ZHANG Xiuming, SRINIVASAN P P, DENG Boyang, et al. NeRFactor: Neural factorization of shape and reflectance under an unknown illumination[J]. ACM Transactions on Graphics (ToG), 2021, 40(6): 237. doi:  10.1145/3478513.3480496. | 
| [23] | WANG Peng, LIU Lingjie, LIU Yuan,    et al. NeuS: Learning neural implicit surfaces by volume rendering for multi-view reconstruction[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 2081. | 
| [24] | YARIV L, GU Jiatao, KASTEN Y,    et al. Volume rendering of neural implicit surfaces[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 367. | 
| [25] | AZINOVIĆ D, MARTIN-BRUALLA R, GOLDMAN D B,    et al. Neural RGB-D surface reconstruction[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 6280–6291. doi:  10.1109/CVPR52688.2022.00619. | 
| [26] | STRAUB J, WHELAN T, MA Lingni,    et al. The replica dataset: A digital replica of indoor spaces[J]. arXiv preprint arXiv: 1906.05797, 2019. doi:  10.48550/arXiv.1906.05797. | 
| [27] | STURM J, ENGELHARD N, ENDRES F,    et al. A benchmark for the evaluation of RGB-D SLAM systems[C]. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012: 573–580. doi:  10.1109/IROS.2012.6385773. | 
