Citation: | YANG Chunling, LIANG Ziwen. Static and Dynamic-domain Prior Enhancement Two-stage Video Compressed Sensing Reconstruction Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240295 |
[1] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582.
|
[2] |
DO T T, CHEN Yi, NGUYEN D T, et al. Distributed compressed video sensing[C]. 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 2009: 1393–1396. doi: 10.1109/ICIP.2009.5414631.
|
[3] |
KUO Yonghong, WU Kai, and CHEN Jian. A scheme for distributed compressed video sensing based on hypothesis set optimization techniques[J]. Multidimensional Systems and Signal Processing, 2017, 28(1): 129–148. doi: 10.1007/s11045-015-0337-4.
|
[4] |
OU Weifeng, YANG Chunling, LI Wenhao, et al. A two-stage multi-hypothesis reconstruction scheme in compressed video sensing[C]. 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 2494–2498. doi: 10.1109/ICIP.2016.7532808.
|
[5] |
ZHAO Chen, MA Siwei, ZHANG Jian, et al. Video compressive sensing reconstruction via reweighted residual sparsity[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(6): 1182–1195. doi: 10.1109/TCSVT.2016.2527181.
|
[6] |
和志杰, 杨春玲, 汤瑞东. 视频压缩感知中基于结构相似的帧间组稀疏表示重构算法研究[J]. 电子学报, 2018, 46(3): 544–553. doi: 10.3969/j.issn.0372-2112.2018.03.005.
HE Zhijie, YANG Chunling, and TANG Ruidong. Research on structural similarity based inter-frame group sparse representation for compressed video sensing[J]. Acta Electronica Sinica, 2018, 46(3): 544–553. doi: 10.3969/j.issn.0372-2112.2018.03.005.
|
[7] |
CHEN Can, WU Yutong, ZHOU Chao, et al. JsrNet: A joint sampling–reconstruction framework for distributed compressive video sensing[J]. Sensors, 2019, 20(1): 206. doi: 10.3390/s20010206.
|
[8] |
SHI Wuzhen, LIU Shaohui, JIANG Feng, et al. Video compressed sensing using a convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 425–438. doi: 10.1109/TCSVT.2020.2978703.
|
[9] |
XU Kai and REN Fengbo. CSVideoNet: A real-time end-to-end learning framework for high-frame-rate video compressive sensing[C]. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, USA, 2018: 1680–1688. doi: 10.1109/WACV.2018.00187.
|
[10] |
XIA Kaiguo, PAN Zhisong, and MAO Pengqiang. Video compressive sensing reconstruction using unfolded LSTM[J]. Sensors, 2022, 22(19): 7172. doi: 10.3390/s22197172.
|
[11] |
ZHANG Tong, CUI Wenxue, HUI Chen, et al. Hierarchical interactive reconstruction network for video compressive sensing[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10095587.
|
[12] |
NEZHAD V A, AZGHANI M, and MARVASTI F. Compressed video sensing based on deep generative adversarial network[J]. Circuits, Systems, and Signal Processing, 2024, 43(8): 5048–5064. doi: 10.1007/s00034-024-02672-8.
|
[13] |
LING Xi, YANG Chunling, and PEI Hanqi. Compressed video sensing network based on alignment prediction and residual reconstruction[C]. 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 2020: 1–6. doi: 10.1109/ICME46284.2020.9102723.
|
[14] |
YANG Xin and YANG Chunling. Imrnet: An iterative motion compensation and residual reconstruction network for video compressed sensing[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 2350–2354. doi: 10.1109/ICASSP39728.2021.9414534.
|
[15] |
WEI Zhichao, YANG Chunling, and XUAN Yunyi. Efficient video compressed sensing reconstruction via exploiting spatial-temporal correlation with measurement constraint[C]. 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 2021: 1–6. doi: 10.1109/ICME51207.2021.9428203.
|
[16] |
ZHOU Chao, CHEN Can, and ZHANG Dengyin. Deep video compressive sensing with attention-aware bidirectional propagation network[C]. 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 2022: 1–5. doi: 10.1109/CISP-BMEI56279.2022.9980235.
|
[17] |
杨鑫, 杨春玲. 基于MAP的多信息流梯度更新与聚合视频压缩感知重构算法[J]. 电子学报, 2023, 51(11): 3320–3330. doi: 10.12263/DZXB.20220958.
YANG Xin and YANG Chunling. MAP-based multi-information flow gradient update and aggregation for video compressed sensing reconstruction[J]. Acta Electronica Sinica, 2023, 51(11): 3320–3330. doi: 10.12263/DZXB.20220958.
|
[18] |
YANG Xin and YANG Chunling. MAP-inspired deep unfolding network for distributed compressive video sensing[J]. IEEE Signal Processing Letters, 2023, 30: 309–313. doi: 10.1109/LSP.2023.3260707.
|
[19] |
GU Zhenfei, ZHOU Chao, and LIN Guofeng. A temporal shift reconstruction network for compressive video sensing[J]. IET Computer Vision, 2024, 18(4): 448–457. doi: 10.1049/cvi2.12234.
|
[20] |
魏志超, 杨春玲. 时域注意力特征对齐的视频压缩感知重构网络[J]. 电子学报, 2022, 50(11): 2584–2592. doi: 10.12263/DZXB.20220041.
WEI Zhichao and YANG Chunling. Video compressed sensing reconstruction network based on temporal-attention feature alignment[J]. Acta Electronica Sinica, 2022, 50(11): 2584–2592. doi: 10.12263/DZXB.20220041.
|
[21] |
RANJAN A and BLACK M J. Optical flow estimation using a spatial pyramid network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 2720–2729. doi: 10.1109/CVPR.2017.291.
|
[22] |
CHAN K C K, WANG Xintao, YU Ke, et al. Understanding deformable alignment in video super-resolution[C]. 2021 35th AAAI Conference on Artificial Intelligence, 2021: 973–981. doi: 10.1609/aaai.v35i2.16181.
|
[23] |
LIANG Ziwen and YANG Chunling. Feature-domain proximal high-dimensional gradient descent network for image compressed sensing[C]. 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 2023: 1475–1479. doi: 10.1109/ICIP49359.2023.10222347.
|
[24] |
ZHU Xizhou, HU Han, LIN S, et al. Deformable ConvNets v2: More deformable, better results[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 9300–9308. doi: 10.1109/CVPR.2019.00953.
|
[25] |
LIU Ze, HU Han, LIN Yutong, et al. Swin transformer V2: Scaling up capacity and resolution[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 11999–12009. doi: 10.1109/CVPR52688.2022.01170.
|
[26] |
HUANG Cong, LI Jiahao, LI Bin, et al. Neural compression-based feature learning for video restoration[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 5862–5871. doi: 10.1109/CVPR52688.2022.00578.
|
[27] |
ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161.
|
[28] |
SOOMRO K, ZAMIR A R, and SHAH M. UCF101: A dataset of 101 human actions classes from videos in the wild[EB/OL]. https://arxiv.org/abs/1212.0402, 2012.
|
[29] |
NAH S, BAIK S, HONG S, et al. NTIRE 2019 challenge on video deblurring and super-resolution: Dataset and study[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, USA, 2019: 1996–2005. doi: 10.1109/CVPRW.2019.00251.
|