Citation: | YANG Zheng, CHENG Yongqiang, WU Hao, YANG Yang, LI Xiang, WANG Hongqiang. Manifold Transformation-based Information Geometry Radar Target Detection Method[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4317-4327. doi: 10.11999/JEIT240286 |
[1] |
WATTS S. Cell-averaging CFAR gain in spatially correlated K-distributed clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5): 321–327. doi: 10.1049/ip-rsn:19960745.
|
[2] |
WANG Sichun, INKOL R, RAJAN S, et al. Performance analysis of the FFT filter bank-based summation CFAR detector[C]. 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, Canada, 2008: 452–456. doi: 10.1109/IMTC.2008.4547078.
|
[3] |
KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745.
|
[4] |
LIU Weijian, LIU Jun, HAO Chengpeng, et al. Multichannel adaptive signal detection: Basic theory and literature review[J]. Science China Information Sciences, 2022, 65(2): 121301. doi: 10.1007/s11432-020-3211-8.
|
[5] |
薛健, 朱圆玲, 潘美艳. 基于海杂波先验知识的雷达目标自适应Rao检测[J]. 电子与信息学报, 2023, 45(11): 3839–3847. doi: 10.11999/JEIT221216.
XUE Jian, ZHU Yuanling, and PAN Meiyan. Adaptive Rao detection of radar targets based on the priori-knowledge of sea clutter[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3839–3847. doi: 10.11999/JEIT221216.
|
[6] |
ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446.
|
[7] |
COLUCCIA A, FASCISTA A, and RICCI G. CFAR feature plane: A novel framework for the analysis and design of radar detectors[J]. IEEE Transactions on Signal Processing, 2020, 68: 3903–3916. doi: 10.1109/TSP.2020.3000952.
|
[8] |
CONTE E, LOPS M, and RICCI G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617–625. doi: 10.1109/7.381910.
|
[9] |
许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084.
XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084.
|
[10] |
许述文, 焦银萍, 白晓惠, 等. 基于频域多通道图特征感知的海面小目标检测[J]. 电子与信息学报, 2023, 45(5): 1567–1574. doi: 10.11999/JEIT220188.
XU Shuwen, JIAO Yinping, BAI Xiaohui, et al. Small target detection based on frequency domain multichannel graph feature perception on sea surface[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1567–1574. doi: 10.11999/JEIT220188.
|
[11] |
WU Xijie, DING Hao, LIU Ningbo, et al. A method for detecting small targets in sea surface based on singular spectrum analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5110817. doi: 10.1109/TGRS.2021.3138488.
|
[12] |
GUO Juan, HAO Guocheng, YU Jiantao, et al. Floating target detection in sea clutter via deshape multiple synchrosqueezing transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4285–4294. doi: 10.1109/TAES.2024.3373717.
|
[13] |
尹鹏智, 戴恩泽. 基于变换域分形的海面小目标快速检测[J]. 电光与控制, 2022, 29(9): 17–21. doi: 10.3969/j.issn.1671-637X.2022.09.004.
YIN Pengzhi and DAI Enze. Fast sea surface small target detection based on transform domain fractal[J]. Electronics Optics & Control, 2022, 29(9): 17–21. doi: 10.3969/j.issn.1671-637X.2022.09.004.
|
[14] |
董云龙, 张兆祥, 刘宁波, 等. 海杂波多普勒谱Hurst指数特性分析及目标检测[J]. 雷达科学与技术, 2023, 21(4): 355–363,374. doi: 10.3969/j.issn.1672-2337.2023.04.001.
DONG Yunlong, ZHANG Zhaoxiang, LIU Ningbo, et al. Characteristic analysis on Hurst index of sea clutter Doppler spectrum and target detection[J]. Radar Science and Technology, 2023, 21(4): 355–363,374. doi: 10.3969/j.issn.1672-2337.2023.04.001.
|
[15] |
BAI Xiaohui, XU Shuwen, ZHU Jianan, et al. Floating small target detection in sea clutter based on multifeature angle variance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9422–9436. doi: 10.1109/JSTARS.2023.3321998.
|
[16] |
陈小龙, 何肖阳, 邓振华, 等. 雷达微弱目标智能化处理技术与应用[J]. 雷达学报, 2024, 13(3): 501–524. doi: 10.12000/JR23160.
CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, et al. Radar intelligent processing technology and application for weak target[J]. Journal of Radars, 2024, 13(3): 501–524. doi: 10.12000/JR23160.
|
[17] |
CHEN Xiaolong, SU Ningyuan, HUANG Yong, et al. False-alarm-controllable radar detection for marine target based on multi features fusion via CNNs[J]. IEEE Sensors Journal, 2021, 21(7): 9099–9111. doi: 10.1109/JSEN.2021.3054744.
|
[18] |
苏宁远, 陈小龙, 关键, 等. 基于深度学习的海上目标一维序列信号目标检测方法[J]. 信号处理, 2020, 36(12): 1987–1997. doi: 10.16798/j.issn.1003-0530.2020.12.004.
SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. One-dimensional sequence signal detection method for marine target based on deep learning[J]. Journal of Signal Processing, 2020, 36(12): 1987–1997. doi: 10.16798/j.issn.1003-0530.2020.12.004.
|
[19] |
黎湘, 程永强, 王宏强, 等. 信息几何理论与应用研究进展[J]. 中国科学: 信息科学, 2013, 43(6): 707–732. doi: 10.1360/112012-424.
LI Xiang, CHENG Yongqiang, WANG Hongqiang, et al. Progress in theory and applications of information geometry[J]. SCIENTIA SINICA Informationis, 2013, 43(6): 707–732. doi: 10.1360/112012-424.
|
[20] |
CHENG Yongqiang, HUA Yongqiang, WANG Yongqiang, et al. The geometry of signal detection with applications to radar signal processing[J]. Entropy, 2016, 18(11): 381. doi: 10.3390/e18110381.
|
[21] |
CHEN Xixi, CHENG Yongqiang, WU Hao, et al. Heterogeneous clutter suppression via affine transformation on Riemannian manifold of HPD matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5109813. doi: 10.1109/TGRS.2022.3147494.
|
[22] |
WU Hao, CHENG Yongqiang, CHEN Xixi, et al. Information geometry-based track-before-detect algorithm for slow-moving fluctuating target detection[J]. IEEE Transactions on Signal Processing, 2023, 71: 1833–1848. doi: 10.1109/TSP.2023.3277205.
|
[23] |
ARNAUDON M, BARBARESCO F, and YANG Le. Riemannian medians and means with applications to radar signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 595–604. doi: 10.1109/JSTSP.2013.2261798.
|
[24] |
YANG Zheng, CHENG Yongqiang, WU Hao, et al. Manifold projection-based subband matrix information geometry detection for radar targets in sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5110415. doi: 10.1109/TGRS.2023.3323663.
|
[25] |
WU Hao, CHENG Yongqiang, CHEN Xixi, et al. Geodesic normal coordinate-based manifold filtering for target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114615. doi: 10.1109/TGRS.2022.3183432.
|
[26] |
杨政, 程永强, 吴昊, 等. 基于正交投影的子带信息几何雷达弱小目标检测方法[J]. 雷达学报, 2023, 12(4): 776–792. doi: 10.12000/JR23079.
YANG Zheng, CHENG Yongqiang, WU Hao, et al. Subband information geometry detection method based on orthogonal projection for weak radar targets[J]. Journal of Radars, 2023, 12(4): 776–792. doi: 10.12000/JR23079.
|
[27] |
BARBARESCO F and MEIER U. Radar monitoring of a wake vortex: Electromagnetic reflection of wake turbulence in clear air[J]. Comptes Rendus Physique, 2010, 11(1): 54–67. doi: 10.1016/j.crhy.2010.01.001.
|
[28] |
HUA Xiaoqiang, ONO Y, PENG Linyu, et al. Target detection within nonhomogeneous clutter via total bregman divergence-based matrix information geometry detectors[J]. IEEE Transactions on Signal Processing, 2021, 69: 4326–4340. doi: 10.1109/TSP.2021.3095725.
|
[29] |
HUA Xiaoqiang, CHENG Yongqiang, WANG Yongqiang, et al. Robust covariance estimators based on information divergences and Riemannian manifold[J]. Entropy, 2018, 20(4): 219. doi: 10.3390/e20040219.
|
[30] |
HUA Xiaoqiang, CHENG Yongqiang, WANG Hongqiang, et al. Geometric means and medians with applications to target detection[J]. IET Signal Processing, 2017, 11(6): 711–720. doi: 10.1049/iet-spr.2016.0547.
|
[31] |
HUA Xiaoqiang, CHENG Yongqiang, WANG Hongqiang, et al. Matrix CFAR detectors based on symmetrized Kullback–Leibler and total Kullback–Leibler divergences[J]. Digital Signal Processing, 2017, 69: 106–116. doi: 10.1016/j.dsp.2017.06.019.
|
[32] |
赵文静, 金明录, 刘文龙. 基于谱范数的矩阵CFAR检测器[J]. 电子学报, 2019, 47(9): 1951–1956. doi: 10.3969/j.issn.0372-2112.2019.09.019.
ZHAO Wenjing, JIN Minglu, and LIU Wenlong. Matrix CFAR detector based on matrix spectral norm[J]. Acta Electronica Sinica, 2019, 47(9): 1951–1956. doi: 10.3969/j.issn.0372-2112.2019.09.019.
|
[33] |
王宏强, 程永强, 华小强, 等. 基于流形等距映射的矩阵信息几何检测方法[J]. 太赫兹科学与电子信息学报, 2023, 21(4): 523–529. doi: 10.11805/TKYDA2023039.
WANG Hongqiang, CHENG Yongqiang, HUA Xiaoqiang, et al. Matrix information geometry method based on manifold ISOMAP[J]. Journal of Terahertz Science and Electronic Information Technology, 2023, 21(4): 523–529. doi: 10.11805/TKYDA2023039.
|
[34] |
HUA Xiaoqiang, PENG Linyu, LIU Weijian, et al. LDA-MIG detectors for maritime targets in nonhomogeneous sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5101815. doi: 10.1109/TGRS.2023.3250990.
|
[35] |
IPIX RADAR FILE. IPIX radar dataset files in Grimsby on the shores of Lake Ontari[EB/OL]. http://soma.mcmaster.ca/ipix.php, 2003.
|
[36] |
DO T N, KADDOUM G, NGUYEN T L, et al. Multi-RIS-aided wireless systems: Statistical characterization and performance analysis[J]. IEEE Transactions on Communications, 2021, 69(12): 8641–8658. doi: 10.1109/TCOMM.2021.3117599.
|
[37] |
VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
|
[38] |
UDRIŞTE C. Convex Functions and Optimization Methods on Riemannian Manifolds[M]. Dordrecht, The Netherlands: Springer, 1994. doi: 10.1007/978-94-015-8390-9.
|
[39] |
ABSIL P A, MAHONY R, and SEPULCHRE R. Optimization Algorithms on Matrix Manifolds[M]. Princeton, USA: Princeton University Press, 2008. doi: 10.1515/9781400830244.
|
[40] |
ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue-based target detection for the K-distributed clutter environment[J]. IET Radar, Sonar & Navigation, 2018, 12(11): 1294–1306. doi: 10.1049/iet-rsn.2018.5229.
|