Citation: | LI Jiao, WAN Tengwen, QIU Wei. Time-varying Sea Surface Temperature Reconstruction Leveraging Low Rank and Joint Smoothness Constraints[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4259-4267. doi: 10.11999/JEIT240253 |
[1] |
DONEY S C, RUCKELSHAUS M, EMMETT DUFFY J, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 2012, 4: 11–37. doi: 10.1146/annurev-marine-041911-111611.
|
[2] |
LODER J W, VAN DER BAAREN A, and YASHAYAEV I. Climate comparisons and change projections for the Northwest Atlantic from six CMIP5 models[J]. Atmosphere-Ocean, 2015, 53(5): 529–555. doi: 10.1080/07055900.2015.1087836.
|
[3] |
BARREIRO M, CHANG Ping, and SARAVANAN R. Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model[J]. Journal of Climate, 2002, 15(7): 745–763. doi: 10.1175/1520-0442(2002)015<0745:VOTSAC>2.0.CO;2.
|
[4] |
王奎民. 主要海洋环境因素对水下航行器航行影响分析[J]. 智能系统学报, 2015, 10(2): 316–323. doi: 10.3969/j.issn.1673-4785.201503006.
WANG Kuimin. Influence of main ocean environments on the navigation of underwater vehicles[J]. CAAI Transactions on Intelligent Systems, 2015, 10(2): 316–323. doi: 10.3969/j.issn.1673-4785.201503006.
|
[5] |
SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83–98. doi: 10.1109/MSP.2012.2235192.
|
[6] |
LIU Jinling, JIANG Junzheng, LIN Jiming, et al. Generalized Newton methods for graph signal matrix completion[J]. Digital Signal Processing, 2021, 112: 103009. doi: 10.1016/j.dsp.2021.103009.
|
[7] |
张彦海, 蒋俊正. 基于笛卡尔乘积图上Sobolev平滑的时变图信号分布式批量重构[J]. 电子与信息学报, 2023, 45(5): 1585–1592. doi: 10.11999/JEIT221194.
ZHANG Yanhai and JIANG Junzheng. Distributed batch reconstruction of time-varying graph signals via Sobolev smoothness on Cartesian product graph[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1585–1592. doi: 10.11999/JEIT221194.
|
[8] |
QIU Kai, MAO Xianghui, SHEN Xinyue, et al. Time-varying graph signal reconstruction[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(6): 870–883. doi: 10.1109/JSTSP.2017.2726969.
|
[9] |
MAO Xianghui, QIU Kai, LI Tiejian, et al. Spatio-temporal signal recovery based on low rank and differential smoothness[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6281–6296. doi: 10.1109/TSP.2018.2875886.
|
[10] |
GIRALDO J H, MAHMOOD A, GARCIA-GARCIA B, et al. Reconstruction of time-varying graph signals via Sobolev smoothness[J]. IEEE Transactions on Signal and Information Processing over Networks, 2022, 8: 201–214. doi: 10.1109/TSIPN.2022.3156886.
|
[11] |
索秋月, 林基明, 王俊义. 利用联合平滑性的时变图信号重构算法[J]. 计算机应用与软件, 2022, 39(4): 275–280. doi: 10.3969/j.issn.1000-386x.2022.04.043.
SUO Qiuyue, LIN Jiming, and WANG Junyi. A time-varying graph signal reconstruction algorithm based on joint smoothness[J]. Computer Applications and Software, 2022, 39(4): 275–280. doi: 10.3969/j.issn.1000-386x.2022.04.043.
|
[12] |
ZHAI Shiyu, LI Guobing, ZHANG Guomei, et al. Spatio-temporal signal recovery under diffusion-induced smoothness and temporal correlation priors[J]. IET Signal Processing, 2022, 16(2): 157–169. doi: 10.1049/sil2.12082.
|
[13] |
LIU Jinling, LIN Jiming, QIU Hongbing, et al. Time-varying signal recovery based on low rank and graph-time smoothness[J]. Digital Signal Processing, 2023, 133: 103821. doi: 10.1016/j.dsp.2022.103821.
|
[14] |
QI Zefeng, LIAO Xuewen, LI Ang, et al. Signal recovery for incomplete ocean data via graph signal processing[C]. GLOBECOM 2022-2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 4274–4279. doi: 10.1109/GLOBECOM48099.2022.10000902.
|
[15] |
LI Siyuan, CHENG Lei, ZHANG Ting, et al. Graph-guided Bayesian matrix completion for ocean sound speed field reconstruction[J]. The Journal of the Acoustical Society of America, 2023, 153(1): 689–710. doi: 10.1121/10.0017064.
|
[16] |
CHEN Yangge, CHENG Lei, and WU Y C. Bayesian low-rank matrix completion with dual-graph embedding: Prior analysis and tuning-free inference[J]. Signal Processing, 2023, 204: 108826. doi: 10.1016/j.sigpro.2022.108826.
|
[17] |
LOUKAS A and FOUCARD D. Frequency analysis of time-varying graph signals[C]. 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, USA, 2016: 346–350. doi: 10.1109/GlobalSIP.2016.7905861.
|
[18] |
GRASSI F, LOUKAS A, PERRAUDIN N, et al. A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 817–829. doi: 10.1109/TSP.2017.2775589.
|
[19] |
HACKBUSCH W. Iterative Solution of Large Sparse Systems of Equations[M]. New York, USA: Springer, 1994: 248–295. doi: 10.1007/978-1-4612-4288-8.
|
[20] |
BELL H E. Gershgorin’s theorem and the zeros of polynomials[J]. The American Mathematical Monthly, 1965, 72(3): 292–295. doi: 10.2307/2313703.
|
[21] |
MA Shiqian, GOLDFARB D, and CHEN Lifeng. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1/2): 321–353. doi: 10.1007/s10107-009-0306-5.
|
[22] |
SIBSON R. A brief description of natural neighbour interpolation[M]. BARNETT V. Interpreting Multivariate Data. Hoboken: Wiley, 1981.
|
[23] |
PERRAUDIN N, PARATTE J, SHUMAN D, et al. GSPBOX: A toolbox for signal processing on graphs[J]. Eprint Arxiv, 2016, 61(7): 1644–1656.
|
[24] |
Physical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration. Sea surface temperature (SST) V2[EB/OL]. http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html, 2023.
|
[25] |
China Argo Real-Time Data Center. Argo real-time data[EB/OL]. ftp: //data. argo. org. cn/pub/ARGO/, 2023.
|