Citation: | NI Lin, LI Lin, ZHANG Shuai, TONG Sicheng, QIAN Yang. Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240219 |
[1] |
杨达明, 黄姣英, 高成. 工艺偏差影响下硬件木马检测功率分析方法[J]. 计算机工程与应用, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197.
YANG Daming, HUANG Jiaoying, and GAO Cheng. Power analysis method of hardware Trojan detection considering process variation[J]. Computer Engineering and Applications, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197.
|
[2] |
刘志强, 张铭津, 池源, 等. 一种深度学习的硬件木马检测算法[J]. 西安电子科技大学学报, 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006.
LIU Zhiqiang, ZHANG Mingjin, CHI Yuan, et al. Hardware Trojan detection algorithm based on deep learning[J]. Journal of Xidian University, 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006.
|
[3] |
成祥, 李磊, 程伟. 基于RTL级硬件木马的检测方法[J]. 微电子学与计算机, 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012.
CHENG Xiang, LI Lei, and CHENG Wei. A detection method of hardware Trojans based on RTL[J]. Microelectronics & Computer, 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012.
|
[4] |
SANKAR V and NIRMALA DEVI M. Efficient hardware Trojan detection using generic feature extraction and weighted ensemble method[C]. The ICACIT 2021 on Advanced Computing and Intelligent Technologies, Singapore, Singapore, 2022: 165–181. doi: 10.1007/978-981-16-2164-2_14.
|
[5] |
谢俊, 周慧忠, 厉小燕, 等. 基于旁路分析的集成电路芯片硬件木马检测分析[J]. 电子技术与软件工程, 2022(18): 112–115.
XIE Jun, ZHOU Huizhong, LI Xiaoyan, et al. Hardware Trojan detection and analysis of integrated circuit chips based on bypass analysis[J]. Electronic Technology and Software Engineering, 2022(18): 112–115.
|
[6] |
徐皓, 易茂祥, 金礼玉, 等. 电路分区自比较的硬件木马检测方法[J]. 合肥工业大学学报: 自然科学版, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007.
XU Hao, YI Maoxiang, JIN Liyu, et al. Hardware Trojan detection method based on circuit partition self-comparison[J]. Journal of Hefei University of Technology: Natural Science, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007.
|
[7] |
赵毅强, 李博文, 马浩诚, 等. 基于混合特征分析的硬件木马检测方法[J]. 华中科技大学学报: 自然科学版, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501.
ZHAO Yiqiang, LI Bowen, MA Haocheng, et al. Hardware Trojan detection method based on combined features analysis[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501.
|
[8] |
JOSE F, PRIYATHARISHINI M, and NIRMALA DEVI M. Hardware Trojan detection using deep learning-generative adversarial network and stacked auto encoder neural networks[C]. The ICT Analysis and Applications, Singapore, Singapore, 2022: 203–210. doi: 10.1007/978-981-16-5655-2_19.
|
[9] |
李林源, 徐金甫, 严迎建, 等. 基于多维特征的门级硬件木马检测技术[J]. 计算机工程与应用, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101.
LI Linyuan, XU Jinfu, YAN Yingjian, et al. Hardware Trojan detection for gate-level netlists based on multidimensional features[J]. Computer Engineering and Applications, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101.
|
[10] |
杨欢, 李海明. MLDet: 基于结构特征和XGBoost的硬件木马检测方法[J]. 计算机应用与软件, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045.
YANG Huan and LI Haiming. MLDet: Hardware Trojan detection method based on structural features and XGBoost[J]. Computer Applications and Software, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045.
|
[11] |
史江义, 温聪, 刘鸿瑾, 等. 基于图神经网络的门级硬件木马检测方法[J]. 电子与信息学报, 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201.
SHI Jiangyi, WEN Cong, LIU Hongjin, et al. Hardware Trojan detection for gate-level netlists based on graph neural network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201.
|
[12] |
PAN Zhixin and MISHRA P. Hardware Trojan detection using side -channel analysis[M]. PAN Zhixin and MISHRA P. Explainable AI for Cybersecurity. Cham: Springer, 2023: 123–140. doi: 10.1007/978-3-031-46479-9_6.
|
[13] |
JYOTHI V and RAJENDRAN J. Hardware Trojan attacks in FPGA and protection approaches[M]. BHUNIA S and TEHRANIPOOR M. The Hardware Trojan War: Attacks, Myths, and Defenses. Cham: Springer, 2018: 345–368. doi: 10.1007/978-3-319-68511-3_14.
|
[14] |
ABDELLATIF K M, CORNESSE C, FOURNIER J, et al. New partitioning approach for hardware Trojan detection using side-channel measurements[C]. Proceedings of the 12th International Symposium on Applied Reconfigurable Computing, Mangaratiba, Brazil, 2016: 171–182. doi: 10.1007/978-3-319-30481-6_14.
|
[15] |
VINOD G, RAMESH S R, and NIRMALA DEVI M. Simulation based hardware Trojan detection using path delay analysis[M]. RANGANATHAN G, FERNANDO X, and ROCHA Á. Inventive Communication and Computational Technologies. Singapore: Springer, 2022: 853–863. doi: 10.1007/978-981-19-4960-9_64.
|
[16] |
NOZAWA K, HASEGAWA K, HIDANO S, et al. Adversarial examples for hardware-Trojan detection at gate-level netlists[C]. Proceedings of the ESORICS 2019 International Workshops, CyberICPS, SECPRE, SPOSE, and ADIoT on Computer Security, Luxembourg City, Luxembourg, 2020: 341–359. doi: 10.1007/978-3-030-42048-2_22.
|