Advanced Search
Volume 46 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
NI Lin, LI Lin, ZHANG Shuai, TONG Sicheng, QIAN Yang. Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219
Citation: NI Lin, LI Lin, ZHANG Shuai, TONG Sicheng, QIAN Yang. Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219

Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan

doi: 10.11999/JEIT240219
  • Received Date: 2024-03-29
  • Rev Recd Date: 2024-09-05
  • Available Online: 2024-09-28
  • Publish Date: 2024-11-01
  • With the rapid development of integrated circuit technology, chips are easily implanted with malicious hardware Trojan logic in the process of design, production and packaging. Current security detection methods for IP soft core are logically complex, prone to errors and omissions, and unable to detect encrypted IP soft core. The paper uses the feature differences of non-controllable IP soft core and hardware Trojan Register Transfer Level (RTL) code grayscale map, proposing a hardware Trojan detection method for IP soft cores based on graph feature analysis, through the map conversion and map enhancement to get the standard map, using the texture feature extraction matching algorithm to achieve hardware Trojan detection. The experimental subjects are functional logic units with seven types of typical Trojans implanted during the design phase, and the detection results show that the detection correct rate of seven types of typical hardware Trojans has reached more than 90%, and the average growth rate of the number of successful feature point matches after the image enhancement has reached 13.24%, effectively improving the effectiveness of hardware Trojan detection.
  • loading
  • [1]
    杨达明, 黄姣英, 高成. 工艺偏差影响下硬件木马检测功率分析方法[J]. 计算机工程与应用, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197.

    YANG Daming, HUANG Jiaoying, and GAO Cheng. Power analysis method of hardware Trojan detection considering process variation[J]. Computer Engineering and Applications, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197.
    [2]
    刘志强, 张铭津, 池源, 等. 一种深度学习的硬件木马检测算法[J]. 西安电子科技大学学报, 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006.

    LIU Zhiqiang, ZHANG Mingjin, CHI Yuan, et al. Hardware Trojan detection algorithm based on deep learning[J]. Journal of Xidian University, 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006.
    [3]
    成祥, 李磊, 程伟. 基于RTL级硬件木马的检测方法[J]. 微电子学与计算机, 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012.

    CHENG Xiang, LI Lei, and CHENG Wei. A detection method of hardware Trojans based on RTL[J]. Microelectronics & Computer, 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012.
    [4]
    SANKAR V and NIRMALA DEVI M. Efficient hardware Trojan detection using generic feature extraction and weighted ensemble method[C]. The ICACIT 2021 on Advanced Computing and Intelligent Technologies, Singapore, Singapore, 2022: 165–181. doi: 10.1007/978-981-16-2164-2_14.
    [5]
    谢俊, 周慧忠, 厉小燕, 等. 基于旁路分析的集成电路芯片硬件木马检测分析[J]. 电子技术与软件工程, 2022(18): 112–115.

    XIE Jun, ZHOU Huizhong, LI Xiaoyan, et al. Hardware Trojan detection and analysis of integrated circuit chips based on bypass analysis[J]. Electronic Technology and Software Engineering, 2022(18): 112–115.
    [6]
    徐皓, 易茂祥, 金礼玉, 等. 电路分区自比较的硬件木马检测方法[J]. 合肥工业大学学报: 自然科学版, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007.

    XU Hao, YI Maoxiang, JIN Liyu, et al. Hardware Trojan detection method based on circuit partition self-comparison[J]. Journal of Hefei University of Technology: Natural Science, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007.
    [7]
    赵毅强, 李博文, 马浩诚, 等. 基于混合特征分析的硬件木马检测方法[J]. 华中科技大学学报: 自然科学版, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501.

    ZHAO Yiqiang, LI Bowen, MA Haocheng, et al. Hardware Trojan detection method based on combined features analysis[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501.
    [8]
    JOSE F, PRIYATHARISHINI M, and NIRMALA DEVI M. Hardware Trojan detection using deep learning-generative adversarial network and stacked auto encoder neural networks[C]. The ICT Analysis and Applications, Singapore, Singapore, 2022: 203–210. doi: 10.1007/978-981-16-5655-2_19.
    [9]
    李林源, 徐金甫, 严迎建, 等. 基于多维特征的门级硬件木马检测技术[J]. 计算机工程与应用, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101.

    LI Linyuan, XU Jinfu, YAN Yingjian, et al. Hardware Trojan detection for gate-level netlists based on multidimensional features[J]. Computer Engineering and Applications, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101.
    [10]
    杨欢, 李海明. MLDet: 基于结构特征和XGBoost的硬件木马检测方法[J]. 计算机应用与软件, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045.

    YANG Huan and LI Haiming. MLDet: Hardware Trojan detection method based on structural features and XGBoost[J]. Computer Applications and Software, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045.
    [11]
    史江义, 温聪, 刘鸿瑾, 等. 基于图神经网络的门级硬件木马检测方法[J]. 电子与信息学报, 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201.

    SHI Jiangyi, WEN Cong, LIU Hongjin, et al. Hardware Trojan detection for gate-level netlists based on graph neural network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201.
    [12]
    PAN Zhixin and MISHRA P. Hardware Trojan detection using side -channel analysis[M]. PAN Zhixin and MISHRA P. Explainable AI for Cybersecurity. Cham: Springer, 2023: 123–140. doi: 10.1007/978-3-031-46479-9_6.
    [13]
    JYOTHI V and RAJENDRAN J. Hardware Trojan attacks in FPGA and protection approaches[M]. BHUNIA S and TEHRANIPOOR M. The Hardware Trojan War: Attacks, Myths, and Defenses. Cham: Springer, 2018: 345–368. doi: 10.1007/978-3-319-68511-3_14.
    [14]
    ABDELLATIF K M, CORNESSE C, FOURNIER J, et al. New partitioning approach for hardware Trojan detection using side-channel measurements[C]. Proceedings of the 12th International Symposium on Applied Reconfigurable Computing, Mangaratiba, Brazil, 2016: 171–182. doi: 10.1007/978-3-319-30481-6_14.
    [15]
    VINOD G, RAMESH S R, and NIRMALA DEVI M. Simulation based hardware Trojan detection using path delay analysis[M]. RANGANATHAN G, FERNANDO X, and ROCHA Á. Inventive Communication and Computational Technologies. Singapore: Springer, 2022: 853–863. doi: 10.1007/978-981-19-4960-9_64.
    [16]
    NOZAWA K, HASEGAWA K, HIDANO S, et al. Adversarial examples for hardware-Trojan detection at gate-level netlists[C]. Proceedings of the ESORICS 2019 International Workshops, CyberICPS, SECPRE, SPOSE, and ADIoT on Computer Security, Luxembourg City, Luxembourg, 2020: 341–359. doi: 10.1007/978-3-030-42048-2_22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (92) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return