Citation: | XUE Yu, FENG Xi’an. Joint Multi-Gaussian Mixture Probability Hypothesis Density Filter for Bearings-only Multi-target Tracking[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240201 |
[1] |
严灵杰, 顾杰, 姜余, 等. 基于随机有限集的多目标跟踪技术综述[J]. 电子信息对抗技术, 2024, 39(1): 81–88. doi: 10.3969/j.issn.1674-2230.2024.01.013.
YAN Lingjie, GU Jie, JIANG Yu, et al. Overview of multi-target tracking technology based on random finite set[J]. Electronic Information Warfare Technology, 2024, 39(1): 81–88. doi: 10.3969/j.issn.1674-2230.2024.01.013.
|
[2] |
MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119.
|
[3] |
MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523–1543. doi: 10.1109/TAES.2007.4441756.
|
[4] |
VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924.
|
[5] |
陈一梅, 刘伟峰, 孔明鑫, 等. 基于GLMB滤波和Gibbs采样的多扩展目标有限混合建模与跟踪算法[J]. 自动化学报, 2020, 46(7): 1445–1456. doi: 10.16383/j.aas.c180077.
CHEN Yimei, LIU Weifeng, KONG Mingxin, et al. A modeling and tracking algorithm of finite mixture models for multiple extended target based on the GLMB filter and Gibbs sampler[J]. Acta Automatica Sinica, 2020, 46(7): 1445–1456. doi: 10.16383/j.aas.c180077.
|
[6] |
ÜNEY M, CLARK D E, and JULIER S J. Distributed fusion of PHD filters via exponential mixture densities[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521–531. doi: 10.1109/JSTSP.2013.2257162.
|
[7] |
LI Tiancheng and HLAWATSCH F. A distributed particle-PHD filter using arithmetic-average fusion of Gaussian mixture parameters[J]. Information Fusion, 2021, 73: 111–124. doi: 10.1016/j.inffus.2021.02.020.
|
[8] |
王奎武, 张秦, 虎小龙. 基于多目标不确定性改进的GM-PHD滤波器[J]. 兵工学报, 2022, 43(12): 3113–3121. doi: 10.12382/bgxb.2021.0693.
WANG Kuiwu, ZHANG Qin, and HU Xiaolong. Improved GM-PHD filter based on multi-target uncertainty[J]. Acta Armamentarii, 2022, 43(12): 3113–3121. doi: 10.12382/bgxb.2021.0693.
|
[9] |
HUANG Qiao, XIE Lei, and SU Hongye. Estimations of time-varying birth cardinality distribution and birth intensity in Gaussian mixture CPHD filter for multi-target tracking[J]. Signal Processing, 2022, 190: 108321. doi: 10.1016/j.sigpro.2021.108321.
|
[10] |
WANG Linxi, HU Xiaoxi, HAN Xun, et al. Simulation of CBMeMber multi-target tracking algorithm based on Gauss mixture[C]. The IEEE 19th International Conference on Communication Technology, Xi'an, China, 2019: 1524–1528. doi: 10.1109/ICCT46805.2019.8947076.
|
[11] |
YANG Chaoqun, CAO Xianghui, and SHI Zhiguo. Road-map aided Gaussian mixture labeled multi-Bernoulli filter for ground multi-target tracking[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7137–7147. doi: 10.1109/TVT.2023.3240740.
|
[12] |
邵鹏飞, 王蕾, 王方勇. 基于序贯蒙特卡洛与概率假设密度滤波的主动分布式声纳多目标跟踪[J]. 兵工学报, 2020, 41(5): 941–949. doi: 10.3969/j.issn.1000-1093.2020.05.013.
SHAO Pengfei, WANG Lei, and WANG Fangyong. Active distributed sonar multi-target tracking based on SMC-PHD filtering[J]. Acta Armamentarii, 2020, 41(5): 941–949. doi: 10.3969/j.issn.1000-1093.2020.05.013.
|
[13] |
CAO Chenghu, ZHAO Yongbo, PANG Xiaojiao, et al. Sequential Monte Carlo cardinalized probability hypothesized density filter based on Track-Before-Detect for fluctuating targets in heavy-tailed clutter[J]. Signal Processing, 2020, 169: 107367. doi: 10.1016/j.sigpro.2019.107367.
|
[14] |
WANG Haihuan, LYU Xiaoyong, and MA Long. Adaptive cardinality balanced multi-target multi-Bernoulli filter based on cubature Kalman[J]. The Journal of Engineering, 2019, 2019(21): 7667–7671. doi: 10.1049/joe.2019.0670.
|
[15] |
HOU Liming, LIAN Feng, DE ABREU G T F, et al. Robust δ-generalized labeled multi-Bernoulli filter for nonlinear systems with heavy-tailed noises[C]. The IEEE 23rd International Conference on Information Fusion, Rustenburg, South Africa, 2020: 1–8. doi: 10.23919/FUSION45008.2020.9190250.
|
[16] |
ZHAO Shunyi, AHN C K, SHI Peng, et al. Bayesian state estimation for Markovian jump systems: Employing recursive steps and pseudocodes[J]. IEEE Systems, Man, and Cybernetics Magazine, 2019, 5(2): 27–36. doi: 10.1109/MSMC.2018.2882145.
|
[17] |
DU Xue, HU Xianbo, HU Junsheng, et al. An adaptive interactive multi-model navigation method based on UUV[J]. Ocean Engineering, 2023, 267: 113217. doi: 10.1016/j.oceaneng.2022.113217.
|
[18] |
ZHOU Gongjian, ZHU Bin, and YE Xiaoping. Switch-constrained multiple-model algorithm for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4414–4433. doi: 10.1109/TAES.2023.3242944.
|
[19] |
PUNITHAKUMAR K, KIRUBARAJAN T, and SINHA A. Multiple-model probability hypothesis density filter for tracking maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 87–98. doi: 10.1109/TAES.2008.4516991.
|
[20] |
DA Kai, LI Tiancheng, ZHU Yongfeng, et al. Gaussian mixture particle jump-Markov-CPHD fusion for multitarget tracking using sensors with limited views[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 605–616. doi: 10.1109/TSIPN.2020.3016478.
|
[21] |
杨标, 朱圣棋, 余昆, 等. 贪婪的量测划分机制下的多传感器多机动目标跟踪算法[J]. 电子与信息学报, 2021, 43(7): 1962–1969. doi: 10.11999/JEIT200498.
YANG Biao, ZHU Shengqi, YU Kun, et al. Multi-sensor multiple maneuvering targets tracking algorithm under greedy measurement partitioning mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1962–1969. doi: 10.11999/JEIT200498.
|
[22] |
CAO Chenghu and ZHAO Yongbo. A multiple-model generalized labeled multi-Bernoulli filter based on blocked Gibbs sampling for tracking maneuvering targets[J]. Signal Processing, 2021, 186: 108119. doi: 10.1016/j.sigpro.2021.108119.
|
[23] |
WU Sunyong, DONG Xudong, ZHAO Jun, et al. A fast implementation of interactive-model generalized labeled multi-Bernoulli filter for interval measurements[J]. Signal Processing, 2019, 164: 345–353. doi: 10.1016/j.sigpro.2019.05.028.
|
[24] |
TURNER J D, MCMAHON J, and ZAVLANOS M M. Receding horizon tracking of an unknown number of mobile targets using a bearings-only sensor[C]. 2022 International Conference on Robotics and Automation, Philadelphia, USA, 2022: 7327–7334. doi: 10.1109/ICRA46639.2022.9811882.
|
[25] |
ZHANG Yuexing, LI Yiping, LI Shuo, et al. A multi-AUV bearings-only multi-target tracking method based on the fast LMB filter[C]. The 4th International Conference on Control and Robotics, Guangzhou, China, 2022: 446–451. doi: 10.1109/ICCR55715.2022.10053872.
|
[26] |
CHEN Jinfeng, MA Hong, LIANG Chengguo, et al. OTHR multipath tracking using the Bernoulli filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1974–1990. doi: 10.1109/TAES.2013.120659.
|
[27] |
SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/TSP.2008.920469.
|