Citation: | MENG Xiangtian, JING Zhehan, CAO Bingxia, SHA Minghui, ZHU Yingshen, YAN Fenggang. Efficient 2-D Direction Finding Based on the Real-valued Subspace Linear Transformation with Nonuniform Circular Array[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4328-4334. doi: 10.11999/JEIT240188 |
[1] |
CONG Jingyu, WANG Xianpeng, LAN Xiang, et al. A generalized noise reconstruction approach for robust DOA estimation[J]. IEEE Transactions on Radar Systems, 2023, 1: 382–394. doi: 10.1109/TRS.2023.3299184.
|
[2] |
SHEN Ji, YI Jianxin, WAN Xianrong, et al. DOA estimation considering effect of adaptive clutter rejection in passive radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5108913. doi: 10.1109/TGRS.2022.3141219.
|
[3] |
WEN Fangqing, GUI Guan, GACANIN H, et al. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3071–3083. doi: 10.1109/TWC.2022.3215965.
|
[4] |
ZHANG Zongyu, SHI Zhiguo, and GU Yujie. Ziv-zakai bound for DOAs estimation[J]. IEEE Transactions on Signal Processing, 2023, 71: 136–149. doi: 10.1109/TSP.2022.3229946.
|
[5] |
马健钧, 魏少鹏, 马晖, 等. 基于ADMM的低仰角目标二维DOA估计算法[J]. 电子与信息学报, 2022, 44(8): 2859–2866. doi: 10.11999/JEIT210582.
MA Jianjun, WEI Shaopeng, MA Hui, et al. Two-dimensional DOA estimation for low-angle target based on ADMM[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2859–2866. doi: 10.11999/JEIT210582.
|
[6] |
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
|
[7] |
BARABELL A. Improving the resolution performance of eigenstructure-based direction-finding algorithms[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Boston, USA, 1983: 336–339. doi: 10.1109/ICASSP.1983.1172124.
|
[8] |
SWINDLEHURST A L, OTTERSTEN B, ROY R, et al. Multiple invariance ESPRIT[J]. IEEE Transactions on Signal Processing, 1992, 40(4): 867–881. doi: 10.1109/78.127959.
|
[9] |
DAVIES D E N. A transformation between the phasing techniques required for linear and circular aerial arrays[J]. Proceedings of the Institution of Electrical Engineers, 1965, 112(11): 2041–2045. doi: 10.1049/piee.1965.0340.
|
[10] |
MATHEWS C P and ZOLTOWSKI M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2395–2407. doi: 10.1109/78.317861.
|
[11] |
BELLONI F and KOIVUNEN V. Unitary root-MUSIC technique for uniform circular array[C]. The 3rd IEEE International Symposium on Signal Processing and Information Technology, Darmstadt, Germany, 2003: 451–454. doi: 10.1109/ISSPIT.2003.1341155.
|
[12] |
MATHEWS C P and ZOLTOWSKI M D. Performance analysis of the UCA-ESPRIT algorithm for circular ring arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2535–2539. doi: 10.1109/78.317881.
|
[13] |
WU Yuntao, AMIR L, JENSEN J R, et al. Joint pitch and DOA estimation using the ESPRIT method[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(1): 32–45. doi: 10.1109/taslp.2014.2367817.
|
[14] |
闫锋刚, 沈毅, 刘帅, 等. 高效超分辨波达方向估计算法综述[J]. 系统工程与电子技术, 2015, 37(7): 1465–1475. doi: 10.3969/j.issn.1001-506X.2015.07.01.
YAN Fenggang, SHEN Yi, LIU Shuai, et al. Overview of efficient algorithms for super-resolution DOA estimates[J]. Systems Engineering and Electronics, 2015, 37(7): 1465–1475. doi: 10.3969/j.issn.1001-506X.2015.07.01.
|
[15] |
HUARNG K C and YEH C C. A unitary transformation method for angle-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1991, 39(4): 975–977. doi: 10.1109/78.80927.
|
[16] |
YAN Fenggang, JIN Ming, LIU Shuai, et al. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries[J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1548–1560. doi: 10.1109/TSP.2014.2298384.
|
[17] |
YAN Fenggang, YAN Xuewei, SHI Jun, et al. MUSIC-like direction of arrival estimation based on virtual array transformation[J]. Signal Processing, 2017, 139: 156–164. doi: 10.1016/j.sigpro.2017.04.017.
|
[18] |
王兆彬, 巩朋成, 邓薇, 等. 联合协方差矩阵重构和ADMM的鲁棒波束形成[J]. 哈尔滨工业大学学报, 2023, 55(4): 64–71. doi: 10.11918/202107104.
WANG Zhaobin, GONG Pengcheng, DENG Wei, et al. Robust beamforming by joint covariance matrix reconstruction and ADMM[J]. Journal of Harbin Institute of Technology, 2023, 55(4): 64–71. doi: 10.11918/202107104.
|
[19] |
WILKES D M, MORGERA S D, NOOR F, et al. A hermitian toeplitz matrix is unitarily similar to a real toeplitz-plus-hankel matrix[J]. IEEE Transactions on Signal Processing, 1991, 39(9): 2146–2148. doi: 10.1109/78.134459.
|