Advanced Search
Volume 46 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Jiang Yu-Wen, Tan Le-Yi, Wang Shou-Jue. Saliency Detected Model Based on Selective Edges Prior[J]. Journal of Electronics & Information Technology, 2015, 37(1): 130-136. doi: 10.11999/JEIT140119
Citation: ZHAO Yiqiang, YAN Mingkai, ZHANG Qizhi, GAO Ya, XIA Xianzhao, GUO Yang, WANG Yaohua, HE Jiaji. SM4-XTS Side Channel Analysis Method Based on Multi-stage CPA[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4161-4169. doi: 10.11999/JEIT240183

SM4-XTS Side Channel Analysis Method Based on Multi-stage CPA

doi: 10.11999/JEIT240183
Funds:  The National Key Research and Development Plan (2021YFB3100903)
  • Received Date: 2024-03-20
  • Rev Recd Date: 2024-09-10
  • Available Online: 2024-09-28
  • Publish Date: 2024-11-01
  • The XEX-based Tweaked-codebook mode with ciphertext Stealing (XTS) is widely used in storage encryption. With the emergence and application of big data computing and novel side-channel analysis methods, the security of the XTS encryption mode has become a matter of concern. Recent studies have attempted side-channel analysis on the XTS mode, aiming to narrow down the key search space by identifying partial keys and tweak values, but a comprehensive analysis of the XTS mode system has not been achieved. In this paper, a side-channel analysis technique targeting the SM4-XTS circuit is proposed. By combining traditional Correlation Power Analysis (CPA) with a multi-stage fusion CPA technique, the technique addresses the binary number shifting issue caused by the iterative modulation multiplication of the tweak values, enabling precise extraction of both the tweak values and keys. To validate the effectiveness of this analytical technique, an SM4-XTS encryption module is implemented on an FPGA to simulate real-world encryption memory scenarios. Experimental results demonstrate that the technique can successfully extract partial tweak values and keys from the target encryption circuit using only 10 000 power traces.
  • [1]
    IEEE. IEEE Std 1619–2007 IEEE standard for cryptographic protection of data on block-oriented storage devices[S]. New York: IEEE, 2008. doi: 10.1109/IEEESTD.2008.4493450.
    [2]
    LISKOV M, RIVEST R L, and WAGNER D. Tweakable block ciphers[J]. Journal of Cryptology, 2011, 24(3): 588–613. doi: 10.1007/s00145-010-9073-y.
    [3]
    王永娟, 樊昊鹏, 代政一, 等. 侧信道攻击与防御技术研究进展[J]. 计算机学报, 2023, 46(1): 202–228. doi: 10.11897/SP.J.1016.2023.00202.

    WANG Yongjuan, FAN Haopeng, DAI Zhengyi, et al. Advances in side channel attacks and countermeasures[J]. Chinese Journal of Computers, 2023, 46(1): 202–228. doi: 10.11897/SP.J.1016.2023.00202.
    [4]
    JIN Xin, FENG Junhao, and HUANG Boyang. Side channel attack on sm4 algorithm with deep learning-based analysis[C]. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 2022: 749–752. doi: 10.1109/AEECA55500.2022.9919093.
    [5]
    UNTERLUGGAUER T and MANGARD S. Exploiting the physical disparity: Side-channel attacks on memory encryption[C]. The 7th International Workshop on Constructive Side-Channel Analysis and Secure Design, Graz, Austria, 2016: 3–18. doi: 10.1007/978-3-319-43283-0_1.
    [6]
    LUO Chao, FEI Yunsi, and DING A A. Side-channel power analysis of XTS-AES[C]. Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 2017: 1330–1335. doi: 10.23919/DATE.2017.7927199.
    [7]
    LUO Chao, FEI Yunsi, DING A A, et al. Comprehensive side-channel power analysis of XTS-AES[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(12): 2191–2200. doi: 10.1109/TCAD.2018.2878171.
    [8]
    TRAUTMANN J, KRÜGER P, BECHER A, et al. Design, calibration, and evaluation of real-time waveform matching on an FPGA-based digitizer at 10 GS/s[J]. ACM Transactions on Reconfigurable Technology and Systems, 2024, 17(2): 24. doi: 10.1145/3635719.
    [9]
    朱圆. 抗旁路攻击的高性能小面积XTS-SM4密码电路设计[D]. [硕士论文]. 南京航空航天大学, 2018.

    ZHU Yuan. Design of high-performance and small-area XTS-SM4 cipher circuit against side-channel attack[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2018.
    [10]
    AN S and SEO S C. Designing a new XTS-AES parallel optimization implementation technique for fast file encryption[J]. IEEE Access, 2022, 10: 25349–25357. doi: 10.1109/ACCESS.2022.3155810.
    [11]
    DIFFIE W and LEDIN G. SMS4 encryption algorithm for wireless networks[J]. Cryptology Eprint Archive, 2008, 329.
    [12]
    李子磊, 刘政林, 霍文捷, 等. 高吞吐率XTS-AES加密算法的硬件实现[J]. 微电子学与计算机, 2011, 28(4): 95–98,102. doi: 10.19304/j.cnki.issn1000-7180.2011.04.024.

    LI Zilei, LIU Zhenglin, and HUO Wenjie, et al. A high-throughput hardware implementation of XTS-AES encryption algorithm[J]. Microelectronics & Computer, 2011, 28(4): 95–98,102. doi: 10.19304/j.cnki.issn1000-7180.2011.04.024.
    [13]
    ZHENG Liang, LI Changting, LIU Zongbin, et al. Implementation of high throughput XTS-SM4 module for data storage devices[C]. The 14th International Conference, SecureComm 2018 on Security and Privacy in Communication Networks, Singapore, Singapore, 2018: 271–290. doi: 10.1007/978-3-030-01704-0_15.
    [14]
    KOCHER P, JAFFE J, and JUN B. Differential power analysis[C]. The 19th Annual International Cryptology Conference on Advances in Cryptology. Santa Barbara, USA, 1999: 388–397. doi: 10.1007/3-540-48405-1_25.
    [15]
    安聪. 基于AES加密算法的侧信道攻击的研究[D]. [硕士论文], 南京邮电大学, 2023. doi: 10.27251/d.cnki.gnjdc.2022.001262.

    AN Cong. Research on side channel attack based on AES encryption algorithms[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2023. doi: 10.27251/d.cnki.gnjdc.2022.001262.
    [16]
    SHAN Weijun, WANG Lihui, LI Qing, et al. A chosen-plaintext method of CPA on SM4 block cipher[C]. 2014 Tenth International Conference on Computational Intelligence and Security, Kunming, China, 2014: 363–366. doi: 10.1109/CIS.2014.57.
    [17]
    ZHAO Cheng, LI Xiuying, JIN Jifang, et al. Two-point joint CPA attacks against SM4 algorithm[C]. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 2019: 826–829. doi: 10.1109/ICCSN.2019.8905348.
  • Cited by

    Periodical cited type(20)

    1. 周晨,周乾伟,陈翰墨,管秋,胡海根,吴延壮. 面向RGBD图像显著性检测的循环逐尺度融合网络. 小型微型计算机系统. 2023(10): 2276-2283 .
    2. 叶海峰,赵玉琛. 视觉位置识别中代表地点的标识牌算法. 小型微型计算机系统. 2021(04): 823-828 .
    3. 王慧玲,宋鑫怡,杨颖. 基于优化查询的改进显著性检测算法. 吉林大学学报(信息科学版). 2020(03): 319-324 .
    4. 郭迎春,李卓. 基于边缘特征和自适应融合的视频显著性检测. 河北工业大学学报. 2019(01): 1-7 .
    5. 鲁文超,段先华,徐丹,王万耀. 基于多尺度下凸包改进的贝叶斯模型显著性检测算法. 计算机科学. 2019(06): 295-300 .
    6. 王宝艳,张铁,李凯,杜松林. DEL分割算法对SSLS算法的改进. 小型微型计算机系统. 2019(10): 2052-2057 .
    7. 张巧荣,徐国愚,张俊峰. 利用视觉显著性的前景目标分割. 兰州大学学报(自然科学版). 2019(06): 833-840 .
    8. 杨俊丰,林亚平,欧博,蒋军强,李强. 基于显著性加权随机优化的快速响应码美化方法. 电子与信息学报. 2018(02): 289-297 . 本站查看
    9. 邓晨,谢林柏. 全局对比和背景先验驱动的显著目标检测. 计算机工程与应用. 2018(03): 212-216 .
    10. 刘亚宁,吴清,魏雪. 基于流行排序的前景背景显著性检测算法. 科学技术与工程. 2018(18): 74-81 .
    11. 闫钧华,肖勇旗,姜惠华,杨勇,张寅. 融合区域像素显著性和时域信息的地面动目标检测及其DSP实现. 电子设计工程. 2018(19): 178-183+193 .
    12. 陈厚仁,蔡延光. 基于视频的干线交通流检测系统的研究与实现. 工业控制计算机. 2017(07): 85-87 .
    13. 赵艳艳,沈西挺. 基于同步更新的背景检测显著性优化. 计算机工程. 2017(10): 264-267 .
    14. 田畅,姜青竹,吴泽民,刘涛,胡磊. 基于区域协方差的视频显著度局部空时优化模型. 电子与信息学报. 2016(07): 1586-1593 . 本站查看
    15. 罗会兰,万成涛,孔繁胜. 基于KL散度及多尺度融合的显著性区域检测算法. 电子与信息学报. 2016(07): 1594-1601 . 本站查看
    16. 张晴,林家骏,戴蒙. 基于图的流行排序的显著目标检测改进算法. 计算机工程与应用. 2016(22): 26-32+38 .
    17. 杜永强. 过度曝光图像缺失信息修复算法. 科技通报. 2016(08): 146-149 .
    18. 郎波,樊一娜,黄静. 利用混合高斯进行物体成分拟合匹配的算法. 科学技术与工程. 2016(20): 73-80 .
    19. 项导,侯赛辉,王子磊. 基于背景学习的显著物体检测. 中国图象图形学报. 2016(12): 1634-1643 .
    20. 吕建勇,唐振民. 一种基于图的流形排序的显著性目标检测改进方法. 电子与信息学报. 2015(11): 2555-2563 . 本站查看

    Other cited types(21)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (200) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return