Citation: | ZHAO Yiqiang, YAN Mingkai, ZHANG Qizhi, GAO Ya, XIA Xianzhao, GUO Yang, WANG Yaohua, HE Jiaji. SM4-XTS Side Channel Analysis Method Based on Multi-stage CPA[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4161-4169. doi: 10.11999/JEIT240183 |
[1] |
IEEE. IEEE Std 1619–2007 IEEE standard for cryptographic protection of data on block-oriented storage devices[S]. New York: IEEE, 2008. doi: 10.1109/IEEESTD.2008.4493450.
|
[2] |
LISKOV M, RIVEST R L, and WAGNER D. Tweakable block ciphers[J]. Journal of Cryptology, 2011, 24(3): 588–613. doi: 10.1007/s00145-010-9073-y.
|
[3] |
王永娟, 樊昊鹏, 代政一, 等. 侧信道攻击与防御技术研究进展[J]. 计算机学报, 2023, 46(1): 202–228. doi: 10.11897/SP.J.1016.2023.00202.
WANG Yongjuan, FAN Haopeng, DAI Zhengyi, et al. Advances in side channel attacks and countermeasures[J]. Chinese Journal of Computers, 2023, 46(1): 202–228. doi: 10.11897/SP.J.1016.2023.00202.
|
[4] |
JIN Xin, FENG Junhao, and HUANG Boyang. Side channel attack on sm4 algorithm with deep learning-based analysis[C]. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 2022: 749–752. doi: 10.1109/AEECA55500.2022.9919093.
|
[5] |
UNTERLUGGAUER T and MANGARD S. Exploiting the physical disparity: Side-channel attacks on memory encryption[C]. The 7th International Workshop on Constructive Side-Channel Analysis and Secure Design, Graz, Austria, 2016: 3–18. doi: 10.1007/978-3-319-43283-0_1.
|
[6] |
LUO Chao, FEI Yunsi, and DING A A. Side-channel power analysis of XTS-AES[C]. Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 2017: 1330–1335. doi: 10.23919/DATE.2017.7927199.
|
[7] |
LUO Chao, FEI Yunsi, DING A A, et al. Comprehensive side-channel power analysis of XTS-AES[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(12): 2191–2200. doi: 10.1109/TCAD.2018.2878171.
|
[8] |
TRAUTMANN J, KRÜGER P, BECHER A, et al. Design, calibration, and evaluation of real-time waveform matching on an FPGA-based digitizer at 10 GS/s[J]. ACM Transactions on Reconfigurable Technology and Systems, 2024, 17(2): 24. doi: 10.1145/3635719.
|
[9] |
朱圆. 抗旁路攻击的高性能小面积XTS-SM4密码电路设计[D]. [硕士论文]. 南京航空航天大学, 2018.
ZHU Yuan. Design of high-performance and small-area XTS-SM4 cipher circuit against side-channel attack[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2018.
|
[10] |
AN S and SEO S C. Designing a new XTS-AES parallel optimization implementation technique for fast file encryption[J]. IEEE Access, 2022, 10: 25349–25357. doi: 10.1109/ACCESS.2022.3155810.
|
[11] |
DIFFIE W and LEDIN G. SMS4 encryption algorithm for wireless networks[J]. Cryptology Eprint Archive, 2008, 329.
|
[12] |
李子磊, 刘政林, 霍文捷, 等. 高吞吐率XTS-AES加密算法的硬件实现[J]. 微电子学与计算机, 2011, 28(4): 95–98,102. doi: 10.19304/j.cnki.issn1000-7180.2011.04.024.
LI Zilei, LIU Zhenglin, and HUO Wenjie, et al. A high-throughput hardware implementation of XTS-AES encryption algorithm[J]. Microelectronics & Computer, 2011, 28(4): 95–98,102. doi: 10.19304/j.cnki.issn1000-7180.2011.04.024.
|
[13] |
ZHENG Liang, LI Changting, LIU Zongbin, et al. Implementation of high throughput XTS-SM4 module for data storage devices[C]. The 14th International Conference, SecureComm 2018 on Security and Privacy in Communication Networks, Singapore, Singapore, 2018: 271–290. doi: 10.1007/978-3-030-01704-0_15.
|
[14] |
KOCHER P, JAFFE J, and JUN B. Differential power analysis[C]. The 19th Annual International Cryptology Conference on Advances in Cryptology. Santa Barbara, USA, 1999: 388–397. doi: 10.1007/3-540-48405-1_25.
|
[15] |
安聪. 基于AES加密算法的侧信道攻击的研究[D]. [硕士论文], 南京邮电大学, 2023. doi: 10.27251/d.cnki.gnjdc.2022.001262.
AN Cong. Research on side channel attack based on AES encryption algorithms[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2023. doi: 10.27251/d.cnki.gnjdc.2022.001262.
|
[16] |
SHAN Weijun, WANG Lihui, LI Qing, et al. A chosen-plaintext method of CPA on SM4 block cipher[C]. 2014 Tenth International Conference on Computational Intelligence and Security, Kunming, China, 2014: 363–366. doi: 10.1109/CIS.2014.57.
|
[17] |
ZHAO Cheng, LI Xiuying, JIN Jifang, et al. Two-point joint CPA attacks against SM4 algorithm[C]. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 2019: 826–829. doi: 10.1109/ICCSN.2019.8905348.
|
1. | 周晨,周乾伟,陈翰墨,管秋,胡海根,吴延壮. 面向RGBD图像显著性检测的循环逐尺度融合网络. 小型微型计算机系统. 2023(10): 2276-2283 . ![]() | |
2. | 叶海峰,赵玉琛. 视觉位置识别中代表地点的标识牌算法. 小型微型计算机系统. 2021(04): 823-828 . ![]() | |
3. | 王慧玲,宋鑫怡,杨颖. 基于优化查询的改进显著性检测算法. 吉林大学学报(信息科学版). 2020(03): 319-324 . ![]() | |
4. | 郭迎春,李卓. 基于边缘特征和自适应融合的视频显著性检测. 河北工业大学学报. 2019(01): 1-7 . ![]() | |
5. | 鲁文超,段先华,徐丹,王万耀. 基于多尺度下凸包改进的贝叶斯模型显著性检测算法. 计算机科学. 2019(06): 295-300 . ![]() | |
6. | 王宝艳,张铁,李凯,杜松林. DEL分割算法对SSLS算法的改进. 小型微型计算机系统. 2019(10): 2052-2057 . ![]() | |
7. | 张巧荣,徐国愚,张俊峰. 利用视觉显著性的前景目标分割. 兰州大学学报(自然科学版). 2019(06): 833-840 . ![]() | |
8. | 杨俊丰,林亚平,欧博,蒋军强,李强. 基于显著性加权随机优化的快速响应码美化方法. 电子与信息学报. 2018(02): 289-297 . ![]() | |
9. | 邓晨,谢林柏. 全局对比和背景先验驱动的显著目标检测. 计算机工程与应用. 2018(03): 212-216 . ![]() | |
10. | 刘亚宁,吴清,魏雪. 基于流行排序的前景背景显著性检测算法. 科学技术与工程. 2018(18): 74-81 . ![]() | |
11. | 闫钧华,肖勇旗,姜惠华,杨勇,张寅. 融合区域像素显著性和时域信息的地面动目标检测及其DSP实现. 电子设计工程. 2018(19): 178-183+193 . ![]() | |
12. | 陈厚仁,蔡延光. 基于视频的干线交通流检测系统的研究与实现. 工业控制计算机. 2017(07): 85-87 . ![]() | |
13. | 赵艳艳,沈西挺. 基于同步更新的背景检测显著性优化. 计算机工程. 2017(10): 264-267 . ![]() | |
14. | 田畅,姜青竹,吴泽民,刘涛,胡磊. 基于区域协方差的视频显著度局部空时优化模型. 电子与信息学报. 2016(07): 1586-1593 . ![]() | |
15. | 罗会兰,万成涛,孔繁胜. 基于KL散度及多尺度融合的显著性区域检测算法. 电子与信息学报. 2016(07): 1594-1601 . ![]() | |
16. | 张晴,林家骏,戴蒙. 基于图的流行排序的显著目标检测改进算法. 计算机工程与应用. 2016(22): 26-32+38 . ![]() | |
17. | 杜永强. 过度曝光图像缺失信息修复算法. 科技通报. 2016(08): 146-149 . ![]() | |
18. | 郎波,樊一娜,黄静. 利用混合高斯进行物体成分拟合匹配的算法. 科学技术与工程. 2016(20): 73-80 . ![]() | |
19. | 项导,侯赛辉,王子磊. 基于背景学习的显著物体检测. 中国图象图形学报. 2016(12): 1634-1643 . ![]() | |
20. | 吕建勇,唐振民. 一种基于图的流形排序的显著性目标检测改进方法. 电子与信息学报. 2015(11): 2555-2563 . ![]() |