Advanced Search
Volume 46 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
XU Shaoping, XIONG Minghai, ZHOU Changfei. Deep Image Prior Denoising Model Using Relatively Clean Image Space Search[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4229-4235. doi: 10.11999/JEIT240114
Citation: XU Shaoping, XIONG Minghai, ZHOU Changfei. Deep Image Prior Denoising Model Using Relatively Clean Image Space Search[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4229-4235. doi: 10.11999/JEIT240114

Deep Image Prior Denoising Model Using Relatively Clean Image Space Search

doi: 10.11999/JEIT240114
Funds:  The National Natural Science Foundation of China (62162043)
  • Received Date: 2024-02-28
  • Rev Recd Date: 2024-09-07
  • Available Online: 2024-09-29
  • Publish Date: 2024-11-10
  • Given that the performance of the Deep Image Prior (DIP) denoising model highly depends on the search space determined by the target image, a new improved denoising model called RS-DIP (Relatively clean image Space-based DIP) is proposed by comprehensively improving its network input, backbone network, and loss function.Initially, two state-of-the-art supervised denoising models are employed to preprocess two noisy images from the same scene, which are referred to as relatively clean images. Furthermore, these two relatively clean images are combined as the network input using a random sampling fusion method. At the same time, the noisy images are replaced with two relatively clean images, which serve as dual-target images. This strategy narrows the search space, allowing exploration of potential images that closely resemble the ground-truth image. Finally, the multi-scale U-shaped backbone network in the original DIP model is simplified to a single scale. Additionally, the inclusion of Transformer modules enhances the network’s ability to effectively model distant pixels. This augmentation bolsters the model’s performance while preserving the network’s search capability. Experimental results demonstrate that the proposed denoising model exhibits significant advantages over the original DIP model in terms of both denoising effectiveness and execution efficiency. Moreover, regarding denoising effectiveness, it surpasses mainstream supervised denoising models.
  • loading
  • [1]
    JIN Xin, ZHANG Li, SHAN Chaowei, et al. Dual prior learning for blind and blended image restoration[J]. IEEE Transactions on Image Processing, 2022, 31: 1042–1056. doi: 10.1109/TIP.2021.3135482.
    [2]
    白勇强, 禹晶, 李一秾, 等. 基于深度先验的盲图像去模糊算法[J]. 电子学报, 2023, 51(4): 1050–1067. doi: 10.12263/DZXB.20211483.

    BAI Yongqiang, YU Jing, LI Yinong et al. Deep prior-based blind image deblurring[J]. Acta Electronica Sinica, 2023, 51(4): 1050–1067. doi: 10.12263/DZXB.20211483.
    [3]
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238.
    [4]
    GOYAL B, DOGRA A, AGRAWAL S, et al. Image denoising review: From classical to state-of-the-art approaches[J]. Information Fusion, 2020, 55: 220–244. doi: 10.1016/j.inffus.2019.09.003.
    [5]
    周建新, 周凤祺. 基于改进协同量子粒子群的小波去噪分析研究[J]. 电光与控制, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637X.2022.01.010.

    ZHOU Jianxin and ZHOU Fengqi. Wavelet denoising analysis based on cooperative quantum-behaved particle swarm optimization[J]. Electronics Optics & Control, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637X.2022.01.010.
    [6]
    曾理, 熊西林, 陈伟. 低剂量CT图像降噪的深度图像先验的目标偏移加速算法[J]. 电子与信息学报, 2023, 45(6): 2188–2196. doi: 10.11999/JEIT220551.

    ZENG Li, XIONG Xilin, and CHEN Wei. Deep image prior acceleration method for target offset in low-dose CT images denoising[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2188–2196. doi: 10.11999/JEIT220551.
    [7]
    ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206.
    [8]
    ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891.
    [9]
    GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722. doi: 10.1109/CVPR.2019.00181.
    [10]
    ANWAR S and BARNES N. Real image denoising with feature attention[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3155–3164. doi: 10.1109/ICCV.2019.00325.
    [11]
    LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise: Learning image restoration without clean data[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2965–2974.
    [12]
    KRULL A, BUCHHOLZ T O, and JUG F. Noise2void-learning denoising from single noisy images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2124–2132. doi: 10.1109/CVPR.2019.00223.
    [13]
    HUANG Tao, LI Songjiang, JIA Xu, et al. Neighbor2Neighbor: Self-supervised denoising from single noisy images[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14776–14785. doi: 10.1109/CVPR46437.2021.01454.
    [14]
    LEMPITSKY V, VEDALDI A, and ULYANOV D. Deep image prior[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9446–9454. doi: 10.1109/CVPR.2018.00984.
    [15]
    HENDRYCKS D and GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. https://arxiv.org/abs/1606.08415, 2023.
    [16]
    XU Jun, LI Hui, LIANG Zhetong, et al. Real-world noisy image denoising: A new benchmark[EB/OL]. https://arxiv.org/abs/1804.02603, 2018.
    [17]
    YANG Yu, XU Haifeng, QI Bin, et al. Stroke screening data modeling based on openEHR and NINDS Stroke CDE[C]. 2020 IEEE International Conference on BioInformatics and BioMedicine (BIBM), Seoul, Korea (South), 2020: 2147–2152. doi: 10.1109/BIBM49941.2020.9313127.
    [18]
    ABDELHAMED A, LIN S, and BROWN M S. A high-quality denoising dataset for smartphone cameras[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1692–1700. doi: 10.1109/CVPR.2018.00182.
    [19]
    徐胜军, 杨华, 李明海, 等. 基于双频域特征聚合的低照度图像增强[J]. 光电工程, 2023, 50(12): 230225. doi: 10.12086/oee.2023.230225.

    XU Shengjun, YANG Hua, LI Minghai, et al. Low-light image enhancement based on dual-frequency domain feature aggregation[J]. Opto-Electronic Engineering, 2023, 50(12): 230225. doi: 10.12086/oee.2023.230225.
    [20]
    SOH J W, CHO S, and CHO N I. Meta-transfer learning for zero-shot super-resolution[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3513–3522. doi: 10.1109/CVPR42600.2020.00357.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (142) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return