Citation: | ZHU Yuhan, LIU Bowen, HUANG Xing, LIU Genggeng. Fault-tolerance-oriented High-level Synthesis Algorithm for Fully Programmable Valve Array Biochips[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4141-4150. doi: 10.11999/JEIT240049 |
[1] |
VERPOORTE E and DE ROOIJ N F. Microfluidics meets MEMS[J]. Proceedings of the IEEE, 2003, 91(6): 930–953. doi: 10.1109/JPROC.2003.813570.
|
[2] |
HU Kai, DINH T A, HO T Y, et al. Control-layer routing and control-pin minimization for flow-based microfluidic biochips[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36(1): 55–68. doi: 10.1109/TCAD.2016.2568198.
|
[3] |
POLLACK M G, SHENDEROV A D, and FAIR R B. Electrowetting-based actuation of droplets for integrated microfluidics[J]. Lab on A Chip, 2002, 2(2): 96–101. doi: 10.1039/b110474h.
|
[4] |
陈志盛, 朱予涵, 刘耿耿, 等. 考虑流端口数量约束下的连续微流控生物芯片流路径规划算法[J]. 电子与信息学报, 2023, 45(9): 3321–3330. doi: 10.11999/JEIT221168.
CHEN Zhisheng, ZHU Yuhan, LIU Genggeng, et al. Flow-path planning algorithm for continuous-flow microfluidic biochips with strictly constrained flow ports[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3321–3330. doi: 10.11999/JEIT221168.
|
[5] |
TSENG T M, LI Bing, HO T Y, et al. Reliability-aware synthesis for flow-based microfluidic biochips by dynamic-device mapping[C]. 2015 52nd ACM/EDAC/IEEE Design Automation Conference, San Francisco, USA, 2015: 1–6. doi: 10.1145/2744769.2744899.
|
[6] |
FIDALGO L M and MAERKL S J. A software-programmable microfluidic device for automated biology[J]. Lab on A Chip, 2011, 11(9): 1612–1619. doi: 10.1039/c0lc00537a.
|
[7] |
LI Bing and SCHLICHTMANN U. Reliability-aware synthesis and fault test of fully programmable valve arrays (FPVAs)[C]. 2017 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Cambridge, UK, 2017: 1–1. doi: 10.1109/DFT.2017.8244449.
|
[8] |
HUANG Xing, HO T Y, GUO Wenzhong, et al. Computer-aided design techniques for flow-based microfluidic lab-on-a-chip systems[J]. ACM Computing Surveys (CSUR), 2022, 54(5): 97. doi: 10.1145/3450504.
|
[9] |
刘耿耿, 叶正阳, 朱予涵, 等. 连续微流控生物芯片下一种多阶段启发式的流层物理协同设计算法[J]. 电子与信息学报, 2023, 45(9): 3401–3409. doi: 10.11999/JEIT221155.
LIU Genggeng, YE Zhengyang, ZHU Yuhan, et al. A multi-stage heuristic flow-layer physical codesign algorithm for continuous-flow microfluidic biochips[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3401–3409. doi: 10.11999/JEIT221155.
|
[10] |
朱予涵, 黄鸿斌, 林泓星, 等. 连续微流控生物芯片下基于序列对的流层物理设计算法[J]. 计算机辅助设计与图形学学报, 2022, 34(4): 535–544. doi: 10.3724/SP.J.1089.2022.19445.
ZHU Yuhan, HUANG Hongbin, LIN Hongxing, et al. Sequence-pair-based flow-layer physical design algorithm for continuous-flow microfluidic biochips[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(4): 535–544. doi: 10.3724/SP.J.1089.2022.19445.
|
[11] |
HU Kai, YU Feiqiao, HO T Y, et al. Testing of flow-based microfluidic biochips: Fault modeling, test generation, and experimental demonstration[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(10): 1463–1475. doi: 10.1109/TCAD.2014.2336215.
|
[12] |
ESKESEN M C, POP P, and POTLURI S. Architecture synthesis for cost-constrained fault-tolerant flow-based biochips[C]. 2016 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2016: 618–623.
|
[13] |
DUBROVA E. Fault-Tolerant Design[M]. New York: Springer, 2013: 185. doi: 10.1007/978-1-4614-2113-9.
|
[14] |
CHOUDHARY G, PAL S, KUNDU D, et al. Transport-free module binding for sample preparation using microfluidic fully programmable valve arrays[C]. 2020 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2020: 1335–1338. doi: 10.23919/DATE48585.2020.9116370.
|
[15] |
KUNDU D, GIRI J, MARUYAMA S, et al. Fluid-to-cell assignment and fluid loading on programmable microfluidic devices for bioprotocol execution[J]. Integration, 2021, 78: 95–109. doi: 10.1016/j.vlsi.2020.12.004.
|
[16] |
SU Y S, HO T Y, and LEE D T. A routability-driven flow routing algorithm for programmable microfluidic devices[C]. 2016 21st Asia and South Pacific Design Automation Conference, Macao, China, 2016: 605–610. doi: 10.1109/ASPDAC.2016.7428078.
|
[17] |
LAI Guanru, LIN Chunyu, and HO T Y. Pump-aware flow routing algorithm for programmable microfluidic devices[C]. 2018 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2018: 1405–1410. doi: 10.23919/DATE.2018.8342232.
|
[18] |
YING Shuaijie, ROY S, HUANG J D, et al. Design for restricted-area and fast dilution using programmable microfluidic device based Lab-on-a-Chip[C]. 2021 24th Euromicro Conference on Digital System Design, Palermo, Italy, 2021: 488–494. doi: 10.1109/DSD53832.2021.00079.
|
[19] |
GRIMMER A, KLEPIC B, HO T Y, et al. Sound valve-control for programmable microfluidic devices[C]. 2018 23rd Asia and South Pacific Design Automation Conference, Jeju, Korea (South), 2018: 40–45. doi: 10.1109/ASPDAC.2018.8297280.
|
[20] |
LIN Y H, HO T Y, LI Bing, et al. Block-flushing: A block-based washing algorithm for programmable microfluidic devices[C]. 2019 Design, Automation & Test in Europe Conference & Exhibition, Florence, Italy, 2019: 1531–1536. doi: 10.23919/DATE.2019.8715125.
|
[21] |
YU H C, LIN Y H, CHEN Zhiyang, et al. Contamination-aware synthesis for programmable microfluidic devices[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(11): 5016–5029. doi: 10.1109/TCAD.2021.3134892.
|
[22] |
DATTA P, CHAKRABORTY A, and PAL R K. Design optimization for programmable microfluidic devices integrating contamination removal and capacity-wastage-aware washing[J]. IETE Journal of Research, 2020, 66(6): 781–796. doi: 10.1080/03772063.2020.1811784.
|
[23] |
LIANG Siyuan, LI Mengchu, TSENG T M, et al. CoMUX: Combinatorial-coding-based high-performance microfluidic control multiplexer design[C]. 2022 IEEE/ACM International Conference on Computer Aided Design, San Diego, USA, 2022: 1–9.
|
[24] |
HUANG Xing, CAI Huayang, GUO Wenzhong, et al. Control-logic synthesis of fully programmable valve array using reinforcement learning[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(1): 277–290. doi: 10.1109/TCAD.2023.3309740.
|
[25] |
CAI Huayang, LIU Genggeng, GUO Wenzhong, et al. Adaptive control-logic routing for fully programmable valve array biochips using deep reinforcement learning[C]. 2024 29th Asia and South Pacific Design Automation Conference, Incheon, Korea, 2024: 564–569. doi: 10.1109/ASP-DAC58780.2024.10473962.
|
[26] |
LIU Chunfeng, LI Bing, BHATTACHARYA B B, et al. Testing microfluidic fully programmable valve arrays (FPVAs)[C]. Design, Automation & Test in Europe Conference & Exhibition, Lausanne, Switzerland, 2017: 91–96. doi: 10.23919/DATE.2017.7926964.
|
[27] |
LIU Chunfeng, LI Bing, BHATTACHARYA B B, et al. Test generation for microfluidic fully programmable valve arrays (FPVAs) with heuristic acceleration[C]. 2018 International Conference on IC Design & Technology, Otranto, Italy, 2018: 97–100. doi: 10.1109/ICICDT.2018.8399765.
|
[28] |
LIU Chunfeng, LI Bing, BHATTACHARYA B B, et al. Test generation for flow-based microfluidic biochips with general architectures[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(10): 2530–2543. doi: 10.1109/TCAD.2019.2948904.
|
[29] |
BERNARDINI A, LIU Chunfeng, LI Bing, et al. Efficient spanning-tree-based test pattern generation for programmable microfluidic devices[J]. Microelectronics Journal, 2018, 79: 38–45. doi: 10.1016/j.mejo.2018.06.011.
|
[30] |
BERNARDINI A, LIU Chunfeng, LI Bing, et al. Fault localization in programmable microfluidic devices[C]. 2019 Design, Automation & Test in Europe Conference & Exhibition, Florence, Italy, 2019: 1607–1610. doi: 10.23919/DATE.2019.8715023.
|
[31] |
LIU Genggeng, ZENG Yuqin, ZHU Yuhan, et al. Towards automated testing of multiplexers in fully programmable valve array biochips[C]. 2024 29th Asia and South Pacific Design Automation Conference, Incheon, Korea, 2024: 570–575. doi: 10.1109/ASP-DAC58780.2024.10473918.
|
[32] |
LIU Genggeng, ZHU Yuhan, GUO Wenzhong, et al. Fault-tolerance-oriented physical design for fully programmable valve array biochips[C]. 2023 60th ACM/IEEE Design Automation Conference, San Francisco, USA, 2023: 1–6. doi: 10.1109/DAC56929.2023.10247720.
|
[33] |
HUANG Xing, GUO Wenzhong, CHEN Zhisheng, et al. Flow-based microfluidic biochips with distributed channel storage: Synthesis, physical design, and wash optimization[J]. IEEE Transactions on Computers, 2022, 71(2): 464–478. doi: 10.1109/TC.2021.3054689.
|