Citation: | LIANG Huaguo, QU Jinxing, PAN Yuqi, TANG Yuxin, YI Maoxiang, LU Yingchun. Wafer-Level Adaptive Testing Method with Low Test Escape[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3393-3400. doi: 10.11999/JEIT230852 |
[1] |
LIU Mengyun, PAN Renjian, YE Fangming, et al. Fine-grained adaptive testing based on quality prediction[J]. ACM Transactions on Design Automation of Electronic Systems, 2020, 25(5): 38. doi: 10.1145/3385261
|
[2] |
YILMAZ E, OZEV S, SINANOGLU O, et al. Adaptive testing: Conquering process variations[C]. 2012 17th IEEE European Test Symposium, Annecy, France, 2012: 1–6.
|
[3] |
WANG Rui, ZHANG Linmiao, and CHEN Nan. Spatial correlated data monitoring in semiconductor manufacturing using gaussian process model[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(1): 104–111. doi: 10.1109/TSM.2018.2883763
|
[4] |
XUE Cheng and SHAWN R D. A one-pass test-selection method for maximizing test coverage[C]. 2015 33rd IEEE International Conference on Computer Design, New York, USA, 2015: 621–628.
|
[5] |
PAN Renjian, ZHANG Zhaobo, LI Xin, et al. Black-box test-cost reduction based on Bayesian network models[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(2): 386–399. doi: 10.1109/TCAD.2020.2994257
|
[6] |
LIU Mengyun, LI Xin, CHAKRABARTY K, et al. Knowledge transfer in board-level functional fault diagnosis enabled by domain adaptation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(3): 762–775. doi: 10.1109/TCAD.2021.3065919
|
[7] |
XU Hongwei, ZHANG Jie, LV Youlong, et al. Hybrid feature selection for wafer acceptance test parameters in semiconductor manufacturing[J]. IEEE Access, 2020, 8: 17320–17330. doi: 10.1109/ACCESS.2020.2966520
|
[8] |
LIN Fan, HSU C K, and CHENG K T. AdaTest: An efficient statistical test framework for test escape screening[C]. 2015 IEEE International Test Conference, Anaheim, USA, 2015: 1–8.
|
[9] |
LIN Fan, HSU C K, and CHENG K T. Learning from production test data: Correlation exploration and feature engineering[C]. 2014 IEEE 23rd Asian Test Symposium, Hangzhou, China, 2014: 236–241.
|
[10] |
LIN Fan, HSU C K, and CHENG K T. Feature engineering with canonical analysis for effective statistical tests screening test escapes[C]. 2014 International Test Conference, Seattle, USA, 2014: 1–10.
|
[11] |
SHINTANI M, MIAN R U H, INOUE M, et al. Wafer-level variation modeling for multi-site RF IC testing via hierarchical Gaussian process[C]. 2021 IEEE International Test Conference, Anaheim, USA, 2021: 103–112.
|
[12] |
ZHANG Jinli, YOU Hailong, JIA Renxu, et al. The research on screening method to reduce chip test escapes by using multi-correlation analysis of parameters[J]. IEEE Transactions on Semiconductor Manufacturing, 2022, 35(2): 266–271. doi: 10.1109/TSM.2022.3144283
|
[13] |
KATRAGADDA V, MUTHEE M, GASASIRA A, et al. Algorithm based adaptive parametric testing for outlier detection and test time reduction[C]. 2018 IEEE International Conference on Microelectronic Test Structures, Austin, USA, 2018: 142–146.
|
[14] |
KUO Y T, LIN Weichen, CHEN Chun, et al. Minimum operating voltage prediction in production test using accumulative learning[C]. 2021 IEEE International Test Conference, Anaheim, USA, 2021: 47–52.
|
[15] |
DAASCH W R, COTA K, MCNAMES J, et al. Neighbor selection for variance reduction in I/sub DDQ/ and other parametric data[C]. The International Test Conference, Baltimore, USA, 2002: 1240–1248.
|
[16] |
ZHANG Jinli, YOU Hailong, and JIA Renxu. Reliability hazard characterization of wafer-level spatial metrology parameters based on LOF-KNN method[C]. 2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits, Hangzhou, China, 2019: 1–4.
|
[17] |
YANG Chenghao, YEN C H, WANG Tingrui, et al. Identifying good-dice-in-bad-neighborhoods using artificial neural networks[C]. 2021 IEEE 39th VLSI Test Symposium, San Diego, USA, 2021: 1–7.
|